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these regions were established. analytically ~.uid substantiated by the
present experimental results as well as thc data from other sources. Over
100 experiments were conducted in the UTIA~3 10 x 18 cm Ilypervelocity shock
Tube equippuJ. wi th a 23-cm dia field of view Mach-Zehnder interferometer
equipped. with a dual-frequency laser light bau.rce It is zhown that real-gas
effects have a significant influence on the size of the regions and. their
transition boundaries . Some coniparison between steady and. nonstationary
reflections are made and. discussed , Isopycnics (lines of constant density)
as well as density distributions along the wedge surface are presented for
the various diffraction processes and their differences and. similarities are
discussed .
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Abstract

The diffraction of shock waves (2 < M 5 � 8) in perfect and
imperfect nitrogen and argon by sharp compressive corners (2 0  < % < 60’)
were investigated analytically and experimentally. It is shown that
seven shock-wave diffraction domains exist in nitrogen and six in argon
in the ranges 1 � M5 � 10 and 0 � ew � 90° . The domains consist of the
four well-known shock wave reflections, i .e . ,  regular reflection ( FIR ) ,
single-Mach (SMR) , complex-Mach ( CIvIR ) and double-Mach (DNR ) reflections.
Al]. the transition boundaries between these regions were established
analytically and substantiated by the present experim~ ita1 results as
we].]. as the data from other sources. Over 100 experiments were conducted
in the 1Y~IAS 10 x 18 cm Hypervelocity Shock Tube equipped wi th a 23-cm
dia field of view Mach-Zehnder interferometer equipped with a dual-
frequency laser light source . It is shown that real-gas effects have a
significant influence on the size of the regi ons and their transition
boundaries. Some comparison between steady and nonstationary reflections
are made and discussed. Isopycnics (lines of constant density) as well
as density distributions along the wedge surface are presented for the
various diffraction processes and their differences and similarities are
discussed.
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Notation

Ar argon

E(a) ~th~olutc error 111 measuring c~a!~t±ty a

He helii~~

specifi~.~ e~ thalpy of the flow in region (I)

L = L1/L5

L1 distance between fir~s~ an* 8ecand triple points

L , distance travelled by incident shock wave from the wedge corner

M. flow Mach nunber in region (i)

N incident shock wave Mach n~~~ er

Mo~ 
change over Mach nu~~ er

flow Mach nu±er In region (2) ~or a DW to f. im

N2 nitrogen

fl isopycri.c nim~ber

02 o~ojgen

P~ flow pressure in region (i)

P(T) partition function

r distance along wedge surface or shock tube wall meas’ired from

the wedge corner

T1 flow temperature in region (I )

t time

• 
. U1 flow velocity in region (i)

U incident shock wave velocity

velocity vector (i) wrt ( j )

x coordinate

y coordinate

vii

-

- 

- 

• .



rn
• _  •

y specific heat ratio

t~t time for incident shock wave to travel distance

81 deflection of flow from its original direction while entering

region (I)

maximum-deflection angle

es sonic angle

• 8w actual wedge angle

= ew + x~ 
effective wedge angle

= sin~~(1/M), Mach angle

P1 flow density in region (I)

incident angle between flow in region (i) and oblique shock wave

x first triple-point-traj ectory angle

second triple-point-trajectory angle

CL) angle between I and R

S~~ erscripts

flow properties as measured from the second triple point

* see Fig. 50

Subscripts

(a) flow ahead of I for BR, SMR , CNR and DNR

(1) flow behind I for BR, SMR , CNR and DNR

(2) flow behind. R for BR, SNR , CMR and DMR

(2 1)  flow behind I in laboratory frame of reference

(3) flow behind M for SNR , CNR and. DNR

(4) flow behind M~ for DMR

(5) flow behind R1 for DMR
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Abbreviations

CNR complex-Mach reflection

DMR double-Mach reflection

FD flow deflection

I incident shock wave in BR, SW, CMR and D}IR

K kink
-

• LHS left-hand. side

N Mach stem in SW, CNR and DMR

second Mach stem in DNR

P reflection point in BR or location of M along the wedge in

SW, CW and. DW

wedge corner

R reflected shock wave in BR , SW , ~~R and DMR wrt T

R’ reflected shock wave in C~~ and DMR with respect to K or T1
B1 second reflected. shock wave in D}4R

RHS right-hand side

RB regular reflection

S slipstream in SW, CIVIR and DMR

• 
~~~~. 

second slipstream in DNR

SD shock (wave) diffraction

SW single-Mach reflection
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T first triple point in SW, CMR and DMR

T1 second triple point in DMR
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1. INTRODt~’TION

When a planar moving incident shock wave encounters a sharp compressive
corner in a shock tube, two processes take place simultaneously. The incident
shock wave is reflected by the wedge surface, whereas the induced nonstationary
flow behind it is deflected. by the wedge corner . Throughout this report the
first process will be referred to as shock-wave reflection (SR) , the second as
flow deflection (FD ) and. the overall phenomena as shock-wave diffraction (SD).

Shock-wave diffraction, i.e., the combination of shock-wave reflection
and. flow deflection, for a given gas, depends on three factors:

(i) Mach number of’ the incident shock wave M.

(2) Corner wedge angle e~.

(3) Initial thermodynamic state of the gas , i.e., temperature T0 and
pressure P0 (for a perfect gas this is not required) .

Since the nonuniform terminology of the various reflection processes
used in the literature tends to be confusing the following terms are suggested
and. will be used throughout this report :

Regular reflection (RB ) ,  Fig. la

• Single-Mach reflection ( SW) , Fig . lb

Complex-Mach reflection ( CMR) , Fig . ic

Double-Mach reflection (DIVI R) , Fig . id

Although RB and SW were first noticed by the distinguished physicist
and philosopher Mach (Ref. 1) as early as 1878, almost no work was done in thi s
field until the 1940’s, when Neumann reinitiated the problem (Ref s. 2 and. 4)
An intensive investigation at Princeton University under the supervi sion of’
Prof . Bleakney finally led to the discovery of CIvIR by Smith (Ref. 6) and DMR
by White (Ref s. 17 and 18) . Once these four different t~’pes of reflection were
found it became necessary to establish the transition criteria between them.
The transition problem from RB to SW was first studied by Neumann (Refs . 2 and.
14) who assumed the following:

(i) A perfect gas.

(2) Two-diinensiona]. inviscid flows .

(3) When there are two possible solutions ( the so-called weak and strong
families of shock waves for producing a required deflection) the weak-
shock solution will occur . This is an experimental fact , which was
verified in the study of two-dimensional supersonic wedge flows (Ref . ~~) .
Although an explanation of minimum entropy for weaker shocks is sometimes
advanced it has not been proven analytically.

(4) The flow problem is pseudo-stationary. This arose from the observation
that any point on the wave configuration having a plane radius vector r

1 
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with the corner as origin was transformed to a new point cr , where c is
a scalar constant . This means that instead. of three independent variables
x, y and t the phenomenon was describable in terms of x/t and y/t , i .e. ,
x and y may be measured relative to any point moving with constant velocity
wi th respect to the corner; in other words , the flow is self-similar.

Using the above assump~~~n~ Neumann argued (Ref s. 2 and 4) that in
an BR the streamline deflection angle 92 through the reflected shock wave is
equal in magnitude but opposite in sign to the deflection angle 

~i 
through

the incident shock wave , i .e. ,  01 + 92 = o (Fig . 7). This is violated when
• the wedge angle Ow decreases to the point where it forces ~i to exceed. in

magnitude the maximum deflection angle 92m rn Thi s criterion will be referred
to as the “d~ tacbment ” cr~ ten on . The detachment criterion can best be
illustrated by using the pressure-deflection (P, 9)-shock polars. Consider
Fig. 2a where the I and. R-polar s represent the incident and reflected shock
waves, respectively. Since the net deflection through an BR is zero the
solution is at the point where the B-polar intersects the P/Po-axis, i .e . ,

- - 
state (2’) on R11j. As the wedge angle 9w decreases the R-polar moves away
from the P/Po-axis until it becomes tangent to it ~Fig. 2a, state (2’) on
Rjy]. Upon further decrease in Ø

~ 
the B-polar will not intersect the pIP0-

axi s any more and an BR is not possible. Consequently, the detachment
criterion is represented. by the Rjv shock polar. (Note that the term detach-
ment comes from steady flows where the oblique shock detaches at this angle.)

Some disagreement between the detachment criterion and experiments
were found. by Smith (Ref. 6). In his experiments BR persisted. beyond the limit
determined by the detachment criterion. Bleakney and. his students (Ref s. 9, 10,
13, 15, 17, 18, 20, 22, 23) tried. to resolve the disagreement found. by Smith
(Ref . 6). Unfortunately however, they were unable to do so. Kawamura and
Saito (Ref. 214) who also tried to resolve this problem by making use of shock
polars discovered that the point of tangency between the R-polar and. the P/P0-
axis (i.e., Rjv, Fig. 2a) can lie outside or inside the I-polar depending on
whether or not the value of Mo is greater or less than a certain change-over
value Mac. Unlike the case of a diatomic gas where different values of Moe
are reported. by different investigators (Ref s. 24 , 60 and 81), only one value
is reported for a monatomic gas (Ref. &.) . All these values are for perfect
gases only.

Henderson and Lozzi ~(Ref . 60) investigated the BR -9 SW-transition
problem experimentally in a wind tunnel and in a shock tube. They introduced
an alternative criterion which has the property that the system alwa~s remainedin mechanical equilibrium (i.e., no pressure discontinuities) during transition.
Consider Fig. 2a and note that, once RB tersinates and. SW forms, the solution
moves from the point where the R-polar intersects the P-axis (state 2’ on R

~v)
to the point where the I and R-polars intersect (states 2 and 3 on ~~~~ Con-
sequently, a sharp pressure change (from P2~ to P2) is associated with this
transition, if the detachment criterion is accepted. Henderson and. Lozzi
argue (Ref. 60) that “a system which develops a pressure discontinuity during
transition cannot be in mechanical equilibrium” . Furthermore they say that,
“If a pressure discontinuity occurs during transition then an unsteady wave of
finite amplitude or a finite amplitude band of waves will be generated in the
flow. These would be expansion twaves] for BR — SMR and compression (waves’~
for SW —~RR.” However, since these waves have not been observed, they
discarded (Ref. 60) the detachment criterion and. suggested an alternative2
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criterion that enables the system to be in mechanical equilibrium during
transition. In order to maintain the system in mechanical equilibrium, the
transition should take place at the point where the B-polar intersects the
I-polar (SW solution) on the P/Po-axi s (BR solution). This is illustrated
by states (2) and (3) on the Rjj polar. The formulation of this criterion
yields 

~1 
+ 82 = 83 = 0 and it will be referred to as the “me’ths.nical-equili-

brium” criterion. Consider polar Riji (Fig. 2a) and note that according to
the detachment criterion an BR takes place at (2’) since the termination
case Rjv was not reached. However, according to the mechanical-equilibrium
criterion, BR cannot occur, since the termination criterion given by Ru was
exceeded. It is worth noting that the area of disagreement in the (N5, e) -
plane between these two different criteria (Fig. 2b) is very large. The
mechanical-equilibrium criterion, rather than reducing the previously-
mentioned disagreement between theory and experiment found by Smith (Ref. 6),
where BR occurred even below the line of the detachment criterion in shock-
tube experiments at low incident shock wave Mach n~m~bers, made it even worse,
for their line lies above the detachment-criterion line for all M5 > 1.68
(No = 2.23, 

~~ 
= 41.20). Nevertheless, Henderson and Lozzi should. be credited

for their new physical approach to the problem. It is worth noting that in
an experiment where the wedge angle e~ is changed gradually perhaps one might
obtain two different criteria for RB —, SW and SW -,BR transitions. Consider
Fig. 2a and note that if one starts with a given SW at states (2) and (3) on
Ri~ and the wedge angle is increased slowly, it is possible that states a (5MB),
b (SW), c (SW .-~BR) and d (BR) might be enco~’ntered., and hence the transition
would follow the mechanical-equilibrium criterion . However , if one started
with a given RB state (2) on Rj and then decreased 9~ gradually, it is possiblethat the sequence of events might be: states d (BR), c (BR), e (BR), f (RB)
and a (SW). This sequence of events follows the detachment criterion. Such
experiments have not been made to date and. need further study.

During their attempt to substantiate their mechanical-equilibrium
criterion, Henderson and Lozzi (Ref. 60) found. a “remarkable anomaly” between
their results from wind-tunnel and. shock-tube experiments. In their shock-
tube results BR continued to exist below the detachment and mechanical-equili-
brium transition boundary lines (Fig. 2b) in a region where the perfect-gas
theory had no RB solution. They resolved the anomaly by advancing that those
RR-con.figurations found below their mechanical-equilibrium transition line
were really undeveloped DNR-configurations in which all shock waves, slip-
streams and triple points typical of a well-developed DNR were too close to-
gether to be observed.

Hornung and I~rchakoff (Ref . 6~) initiated another criterion for the
termination of BR. They argued that in order for an SW to form, a length
scale must be available at the reflection point, i.e •, pressure signals must
be cou nicated to the reflection point. This single argument eventually led
them to two different termination lines f or BR, depending on whether th~flow under consideration is steady or nonstationary .

Consider the nonstationary RB in Fig. 2c (i) and note that the length
L~~ 

can affect the reflection point P • rnly when a subsonic flow is established
between Q and P (in a frame of refer-~-nce attached to P). In a steady flow
(Fig. 2c, ii) the geometrical length L-~,, can affect the reflection point P only
if a propagation path exists between point ~ and point P via the expansion

3

-fl-rn -- -— ~~~~~~~~~~~ - --— - --~~~~~ - ---—~~~-•~~ ~~~~~~~~~—~~~~~~ - - . — - - -  f l - - ---



• 
fi 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • _ _- -_.- ._ . -fl _ •~~~~~~~~~~~~ .~~ 
- -~~~~~~~~~~~

wave at ~~~
‘ . This is possible only if the flow between P and Q’ is subsonic.

According to Hornung and Kychakoff (Ref. 65) this could happen if an SW
existed since the flow behind the Mach stem is always subsonic. Consequently,
they argued that transition takes place the very first time when an SMR can
occur. Consider Fig . 2a and note that this corresponds to states (2) and (3)
on ~~~ That also represents the mechanical-equilibrium criterion of Henderson
and Lozzi (Ref . 60).

Consequently, Hornung and Kychakoff ’s sonic criterion led to two
different transition lines in steady and nonstationary flows. In steady flows
the transition satisfies the mechanical-equilibrium criterion, while for non-
stationary flows their analysis led to a new transition line, which will be

• referred to as the “sonic” criterion. Note that if the sonic-transition line
was drawn in Fig. 2b, it would coincide with the detachment criterion-transition
line since it lies below it only at very low incident shock waves (Ref. 74).

• Consequently it could not be drawn on Fig . 2b. Note that Hornung and Kychakoff
(Ref . 65) claim to have experimental data obtained in both shock-tube and wind-

• tunnel flows which verify their criterion.

The transition boundary lines in Fig. 2b were calculated using the
steady-flow theory for regular and single-Mach reflection. This is justified
by the fourth assumption discussed previously . In 1951 Jones, Martin and
Thornhifl (Ref 16) used this assumption to transform the equations of motion
so that instead of three independent variables x, y, t only two x/t and y/t

• were sufficient to describe the phenomenon. Their analysis was later verified
experimentally by Parks (Ref . 19). However, since in the nonstationary case
the shock waves are usually curved, the results from the steady-state analysis
are correct only in the vicinity of the reflection point for HR and the triple
point in SW, CMR and DMR .

Skews (Refs . 57 and 58) tried. to resolve the disagreement between
analysis and experiment by arguing tha t the boundary conditions for BR and SW
should be relaxed. In the case of SW he assumed that the pressure and flow
deflection immediately behind the reflected. shock wave B need not be the same
as those behind the Mach stem. Consequently he defined two relaxed variables
F = (P2 - P0)/(P3 - P0) and € = 82 - 83. (Note that in the usual SW theory
F = 1 and € = o.) He supported this new approach by the fact that some
investigators claimed that the slipstream was not a surface of discontinuity
but a shear-flow mixing region. However, since excellent agreement was found
between the classical (without relaxed boun dary conditions) theory and
expe - iment for the angles between the various shock waves and slipstream
(Ref s. 6 , 10, 13, 15, 18 and 43) , one cannot justify the need to relax the
bo~.idary conditions for 5MB.

In the RB-analysis (Ref . 58) Skews relaxed the usual boundary
condition that the flow immediately behind the reflected shock is uniform and
parallel to the wall. Instead, he defined a relaxation angle € between the
flow direction and, the wall. (Note ~ = 0 is the usual boundary condition.)
Although his numerical results were in better agreement with experiments one
must bear in mind that his analysis was based mainly on mathematical concepts.
Unlike the foregoing SW-case physical considerations impose the boundary
condition that the supersoni c flow behind the reflected. shock w ave is parallel
to the rigid wall.

Once RB terminates , three different types of reflection can occur
in nonstationary flow s , i .e.,  8MB, CMR and DNR. White (Ref . 17) was the
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first to notice that when the flow Mach nunber behind the reflected shock wave
H , becomes supersonic in a f rame of reference attached to the triple point a
“kink” K forms in B and the transition 5MB -* CMR occurs . A mechani sm for the
transition was later suggested by Gvozdeva et al (Ref. 45) and Henderson and
Lozzi (Ref .  60) . Henderson and. Lozzi suggested that a “band of compression

• waves” must exist in a CMR. These compression waves then converge to a shock
wave to form DW when }~ > 1. Unfortunately, their suggestion was not substan-
tiated. analytically or experimentally. In addition the precise value of ~~ for

• the termination of CW and the formation of DMR was not established either.
The correct gasdynamic criterion for the termination of CNR and formation of
DMR was established during the present study. It will be shown in Section 2.4.2
that the flow behind the reflected. shock wave must be supersonic with respect to
the kink of a CMR in order for a DMR to form. Consequently, the CMR ~ — DNR
transition occurs at Z~ = 1. It was found further that ~~ = 1 corre sponds to
M2 ~ 1.3 (~~ measured wrt the first triple point) and hence Gvozdeva et a].

• (Ref . 145) and Henderson and. Lozzi (Ref. 60) were correct in predicting the
transition at I~ > 1.

An attempt to establish some transition-boundary lines expe rimentally
was made by Bazhenova et a]. (Ref . 62) . However , their experiments did. not cover
a significant range of incident shock wave Mach nu~~ er (M5) and corner wedge
angle (8w) . Their experimental boundaries for SW, CNR and DW are limited.
to N5 < 14.5. Unfortunately, experiments made by other researchers also did
not cover a wide range of interest. Smith (Ref . 6),  Kawamura and. Saito (Ref.
214) and White ’s (Ref. 17, 18) experimental data covered only the range 1 <
N5 < 2.75 , while Henderson and Lozzi’s (Ref.60) experiments were centred
around the BR-termination criterion line. Law and Glass (Ref. 51) were the
first to extend the range of incident shock Mach nu~~er up to Ms .� 8, but
their corner wedge-angle range at the lower end was limited (25 ° � 8w < 60°).

Figure 3 which is a reproduction of Fig. 5 from the paper by Bazhenova
et al (Ref. 62) sunmarizes all the theoretical and experimental knowledge (ex-
cluding the mechanical equilibrium criteri on for the termination of RB , discussed
earlier) concerning the regions and boundaries of regular , single-Mach, complex-
Mach and double-Mach reflections available when the present study started.. Only
the termination criterion of BR is calculated theore ti cally for both perfect
and imperfect gases (lines 1 and 2, respectively). Although the SW boundary
line is also calculated, line 5 (for a perfect gas only) it does not start or
terminate at any other boundary line and hence does not enclose any region.
The imperfect boundary lines between SW, CMR and DMR (lines 3 and 14) were all
obtained, experimentally and they do not encompass any closed region either .

• There is no information about the types of reflections for wedge angles in the
range 0 < 0w < 20b .

Although most of the investigators were interested, in finding the
correct transition criteria from one type of reflection to another there were
some attempts (Ref s. 5, 15, 61, 63, 613) to solve the entire flow field for a
given reflection utilizing various analytical or numerical methods. Unfor-
tunately the numerical results suffer from a lack of agreement for the same
initial conditions depending on the technique used for a solution (Ref 5. 61,
63 and 73) .

In view of the above literature survey, the present research was
directed towards:

- 

fi 

(1) Resolving the disagreements concerning the termination criterion of BR.
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(2) Establishing the correct termination criterion of OW and. hence the
formation criterion of DNR .

(3)  Defining domains and transition boundaries of the various reflections
in order that they can be predicted a priori.

(13) Extend.tng the experimental data over a much wider range, i .e . ,  0 < ew < 600
and. 1 < N 8  < 10.

(5) Comparing the existing n~~erica1 predictions of the isapycnic (constant-
density lines) in the flow field with those obtained interfer~~~tricaily.

(6) Resolving and clarifying areas of disagreement existing in the literature
concerning this problem.

To achieve these goals it was decided to approach the problem using the
following physical concepts:

(1) It was assumed that the physical processes are governed by the usual
equations of conservation of mass, momentum and energy, as written for
oblique shock waves. The pressure and flow directions were taken as
invariant across shear layers, and very near the wall flow was assumed
to be parallel to the wail.

(2) The shock—reflection process depends on the flow-deflection process behind
it. Consequently, the interaction between these two processes should be
investigated and understood. Note that this approach was initiated by Law
(Ref. 48) and Law and. Glass (Ref. 51). Unfortunately, it was not adapted.
by other investigators.

(3) Real-gas effects strongly influence the locati on of the transition boundary
lines in the (Me, 8w)-plane. Consequently, they should be included in
solving the equations of motion. This is substantiated by lines 1 and.~~
of Fig. 3 that illustrate the significance of real-gas effects in shifting
the RB-transition boundary line.

Due to the difficulties in solving the nonlinear equations of motion
it was decided to restrict the imperfect-gas model to thermodynamic and chemical
equilibrium.

The imperfect-gas model in this report takes into account the excita-
tion of the internal degrees of freedom such as rotation-vibration coupling,
vibration and dissociation in nitrogen, and electronic excitation and ionization
in argon (see Appendix A in Ref. 48 for details).

Note that the flow usually passes through two shock waves (incident
and reflected.). Consequently, even if the incident shock wave is very weak
the temperature behind the reflected shock wave can be such that the contri-
bution of the vibrational degree of freedom in a diatonic gas can no longer
be neglected.

(1+) The CMR and SW should be treated from a frame of reference attached to
the kink of the CMR or the second triple point of the DMR . Therefore,
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the correct transformation of the frame of reference from the first
triple point should be investigated, understood and formulated.

During the present study all the criteria for the formation and
termination of BR, SW OW and DMR have been established analytically. Con-
sequently, the (Ne, e~j  and the (ivi~, ew)-planes were divided into the domains
of the different types of reflection and diffraction processes, respectively .

Over 100 experiments have been performed in the 10 ~~ x 18 om 1ff lASHypervelocity Shock Tube in nitrogen and argon, at an initial temperature of
nearly 300 K and a pressure of 15 torr . The shock-Mach-ntnther range was
2 < N 5  < 8  over a series of wedge angles 2° < e~ < 600 . Dual-wavelength
laser interferograms were obtained by using a 23-~~ dia field of view Mach-
Zehnd.er interfercmieter. For each and. every type of diffraction the shock
shapes and density field (isopycnics) as well as the density distribution
along the wedge surface were deduced from the corresponding interferograms ,
and. c~~~ arisons were made with existing n~~~rical analyses.

The experimental results from the present experiments and other
sources substantiate the present analysis. In addition areas of di sagreement

- which existed in the literature have been clarified and resolved. Finally,
some comparisons between steady and. nonstationary shock reflections were made
and discussed.

2. OBLI~tJE SHOCK-WAVE B~~’IECTION IN NONST~2IONARY FLOWS

Since the incident shock wave moves with a constant velocity, the
entire problem can be considered from a pseudo-stationary point of view, by
attaching a frame of reference to any point on the incident shock wave . The
above suggests that instead of three independent variables x, y and. t the
phenomenon is now describable in terms of x/t and y/t and the flow problem
is self-similar.

2.1 Reasons for Reflection

Consider now a planar incident shock wave I, having Mach number
N5 (Pig. 4a) , colliding with a sharp c~~~ ressive corner of angle ew. Denote
the states ahead of and behind it by (0) and (i), respectively. Attach a frame
of reference to the reflection point P where I meets the wedge surface . The
flow in state (0) moving parallel to the wedge surface approaches I wi th a
velocity U0 = U5 cosec or a Mach number M0 = M5 cosec ~~, where ~~ =90° - 9~ is the incident angle. While passing through I the flow is deflected
towards the wedge surface by an angle e,~ from its original direction , and its
dynamic and thermodynamic properties are changed. The deflection causes the
flow in state (1) to approach the wedge surface obliquely at an angle Gi
(Fig . 14a) .

7 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -



•~-~ ~‘~~r~- - -
~~~ 

— 
~
- -- - ‘ ‘~~“- ---

~~~~~~~
-—- --—-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ - — —.--------,- — -

From simple gasd.ynamic considerations this situation is analogous
to the case of having a steady flow (P1, T1 and M~) over a wedge e1 (Fig . 5).
It is well known that depending on M1 this flow can negotiate the corner
either through a subsonic turning (Fig . 5a) if Ml < 1, or through a bow shock
wave, straight and attached (Fig . 5b), curved and attached (Fig . 5c) or curved
and detached (Fig. 5d) depending on 01 (perfect gas) , when the flow is super-
sonic }4~ > 1 ( see Appendix A for further details). For an imperfect gas the
initial temperature T1 and pressure P1 are also important .

Applying the above steady flow results, the pseudo-stationary
situation suggests that if Ni > 1 the flow can negotiate the wedge surface either
through an attached (to point P) shock wave (straight or curved , Fig . 6b and
6c , respectively) which will result in an RB , or through a detached shock
wave that will result in a reflection through a three-shock confluence
configuration rather than two (Fig . 6d) . In the case of Nj. < 1  the analogy
suggests that the flow adjusts its direction through a subsoni c turning
(Fig . 6a) .  However , it has been found experimentally throughout this study
that in the nonstationary case SW occurs even for combinations of Ms and 9~for which Nj. < 1 wrt point P. We suggest that the reflection (when Mi_ <1
arises from the interaction between the incident shock wave and the bow shock
generated by the wedge (Fig . 13b) - Let the frame of reference be attached to
point T , where these two shock waves meet . State (2) results from state (1)
on passing through a bow shock wave R. Consequently P2 > P1 and ~~2/~~0 > Pi/Fo.
To satisfy the last condition the portion of the incident shock wave I that
lies below T (dashed line TP) must move forward. from P to M in order to
become more normal to the oncoming relative flow, forming a Mach stem TM,
triple point T and, slipstream S (omitted for clarity) .

The triple point trajectory path angle x plays a significant role
when it makes ow = e~ ÷ ~ 

large enough such that Mj will always be greater
than unity wrt triple point T (a necessary condition for the existence of R).

Note that when the induced flow behind the incident shock wave
becomes subsonic (it ’ < 1), and, no shock waves arise from the corner, since
the flow can turn subsonically (Fig. 5a), neither the first reason , Fig . 14a
(the only one quoted in the literature), nor the one added here, Fig. 4b,
apply.

Perhaps the most significant conclusion from the above discussion
is that shock-wave reflection in the nonstationary case depends additionally
on the flow-deflection process over the wedge corner, and cannot be treated
independently of it.

2.2 Regular Reflection (BR)

The regular reflection shock-wave configuration (two-shock con-
fluence) is shown in Fig . 7. The frame of reference is attached to the
reflection point P and it is moving parallel to the wedge surface wi th the
constant velocity U0 = U~ cosec ~~~~~~, where ~~ = 90° - O~ is the angle ofincidence between the incident shock wave I and the oncoming flow r50. Upon
passing through I the flow (U0) is deflected by an angle 0j . from its original
direction. This deflected supersonic flow U]. is then redeflected by the
reflected shock wave R, by an angle 02 = -01, 50 that the flow is again
parallel to the wedge surface , meeting the required boundary conditi on .

8 - 

-

~~~~~~

- -

~~~~~~~~~~
- ---- ,.

~~

- -



r -- —

~~~~~~~~~~~

- - - —

~~~~~~~~~~~~~~~~~

‘

~~~~~~~~

--— -
~ 

- -----j- —- -
~~~ 

--
~~~

--- - — • • —--- --~~ -. -~~~~

It has already been mentioned (Section 2.1) that the flow behind R
(U2) could be either supersonic (~~ > 1) or subsonic (M2 < 1) wrt point P.
Consequently, two different types of RB are possible since the reflected
shock wave can be. either straight or curved (Figs . 6b and 6c , respectively)
in the vicinity of the reflection point P.

2.2.1 Analytical Formulation

In the frame of reference attached to the reflection point P , the
incident and. reflected shock waves (I and R) can be treated using steady-flow
theory~~’ Considering I and R separately and making use of the oblique shock
wave relations the equations of motion for the regular reflection are:

For I:

p0tan~0 = p1tan(~~0 - ej .) (2. 1)

p0U0sin~0 = p1U1sin(~ - e~) (2.2)

p + p U 2sin
2
~ = P

1 
+ p,~U1

2sin2(q 0 
- 81) (2.3)

+ ~ U0~siri~~~ = h
1 

+ ~~~ U1
2sin2( i ~0 - 8].) ( 2. 14)

For R:

p1tan~1 = p2tan~~] - 82) (2.5)

p
1
U
1
sin~1 

= p2U2
sin(~~ - 82) (2.6)

P1 + p1
U
1
2
sin

2
~1 

= P2 + p2U2
2sin2(~~ - °2~ 

(2.7)

+ ~ U1~ sin~~1 = h2 + ~~~ U2
2
sin

2
(~~ 

- 82) (2.8)

The boundary condition is:

82 
= -81 (2.9)

If equilibri~~ is ass~~ed, two thermodynamic properties are suffi-
cient to define a state, e.g., p = p(P,T), h = h(P.,T). Consequently, the
above nine equations have thi rteen independent variables , namely: P0, Pj .,
P2, T~~ , T1, T2, U0, U1, U2, ~~~ ~i 

81 and 82. Thus , if four of them are
known, the remaining nine can be calculated. The four known parameters are
usually the flow pressure and t~~~erature ahead of the incident shock wavePo and To, respectively, the flow velocity t50 = U8 secew and its angle of
incidence with the primary shock wave = 90 - ~~ Note that In shock
tube experiments P0, T~ , M5 and ow are the known or measured parameters .
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2.2.1.1 Perfect-Gas Solution

When the gas under consideration is ass~~~d to be calorically and
thermally perfect the above nine equations can be reduced to the following
four equations (Ref. 31):

P 1/2
- 

2y 
M2 

+ 
y - 1 

-PE~ , 7 + 1  ~ ,1 7 + 1  P,~4. — ~~~~~~~ ________________________________ (.~ ~~A

P ‘ 
..w,

‘ 
3. + - ~~~~~~~~~~~ 

- 1 
+

~ ~~l P01 + 1 P0,1 
-

- l  2 7 +l~~~~1
l+

~~~D~ 
N 7 - 1 P

~~. 0 0
- 1 2  P

1+ 2 N1 7 + 1 0
y - 1  P1

83. + 82 
= 0 (2.13)

The above set of equations involves seven unknowns, namely: y, N0,
~~, Oj., 8~ , Pj./P0 and P2/P1. Consequently, in order to solve this set, three
of the variables must be known. If 

~~
, M0, P1/P0 are selected, the rest can

be easily calculated, since the solution now involves solving one equation at
a time with one unknown, i.e., 8], is calculated from Eq. 2.10 , then Nj. and
02 from Eqs. 2.12 and 2.13, respectively, and finally p2/P1 from Eq. 2.11.
This also suggests that Eqs. 2.10 to 2.13 are reducible to one equation with
one unknown.

It should be mentioned that for thi s case (perfect gas) , the equations
of motion ( Eqs . 2.1 to 2.9) have been reduced by Henderson (Ref. 31) to a single
polynomial of order six .

2 .2.1.2 D~~erfect-Gas Solution

When real-gas effects such as vibration, vibration-rotation coupling
and dissociation in diatomic gases or electronic excitation and ionization in
monatomic gases are considered, the equati ons of motion ( Eqs . 2.1 to 2.9)
cannot be sinçlified . Consequently , one has to solve nine nonlinear algebraic
equations with nine unknowns . However , since the nine equations of motion
consist of two similar set s of four equations each (2.1 to 2. 14 and 2.5 to 2.8) ,
a method was developed in which each set is treated Independently . The final
solution is obtained when the last equation (Eq . 2.9) is satisfied.

Consider the first set (Eqs . 2.1 to 2.14) which involves eight
variables Po, T0, U0 and ~~ on the LHS and P11 Tj ., U1 and on the RHS .
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Since the variables on the LHS consist of the initial conditions and hence are
known , the BHS can be calculated and P3., T3., U1 and. e,,~ are found.

The second set (Eqs . 2.5 to 2.8) which again consist of eight
variables I’1, T1, U1 and 

~~~j , on the LHS and P2, T2, U2 and ~2 on the RHS is
slightly different since not all the parameters on the LHS are known. Only
P1, T1 and U1 which were ob tained from the solution of the first set are
known , while ~i is still unknown . However , if we guess a value of ~~ the
second set becomes exactly the same as the first one and the four parameters
on the BuS (P2, T2, U2 and 82) can be calculated. The correct value of ~imust satisfy the boundary condition , i.e •,  Eq. 2.9 . The Newton-Raphson method
Sfl sUt a a rapid convergence to the correct value of ~~~~~ . A computer program
(based on the above method) , as well as a typical output is given in Appendix B.

2.2.2 Graphical Solution ( Shock-Polar Presentation)

A graphical solution of an RB can be obtained by making use of’
(P , 8)-shock polars (Ref . 27) . Consider Fig . 8 in which the I-polar corre-
sponds to P0, To and Mo = N6 secow. State (1) behind I can be easily
obtained from the known incident angle ~~ = 90° - 8~,,. Once state (1) is
determined the shock polar that corresponds to P1, T~ and N1, i.e., the
B-polar, can be d.rawn. The solution , state (2) ,  is at the point where the net
deflection equals zero (~~-= 0), i.e., where the R-polar intersects t1~ P/Pa-axis-. -Figure 8 reveals that theoretically two solutions are possible , (2) and
(2’). However (2’) corresponds to the so-called strong solution and is dis-
carded on physical grounds that it is not observed in practice.

It is worthwhile mentioning again that the reflected shock wave R
is straight (in the vicinity of the reflection point P) if the solution on
the B-polar lies in the interval e - e~ . ( see Fig . 9a) whereas for the small
interval - 8~~ a curved reflected. s~iock wave is obtained (Fig . 9b) . An
RB with a curved reflected shock wave can be seen in Fig . 20 of Ref . 23.

2.2.3 Termination of Regular Reflection

As noted earlier (Section 1) three different criteria for the
termination of BR exist in the literature. The first one is due to Neumann
(Ref . 2) and is known as the “detachment” criterion, which states that RB
terminates when the B-polar becomes tangent to the P-axis on the (P, 0)-plane
(Fig . 2ft, Rj~) .  Analytically this can be expressed as:

81 + 82m 
0 (2.114)

The second criterion, the “mechanical equilibrium” criterion , is
due to Henderson and Lozzi (Ref . 60). It states that BR terminates when the
I and R-polars intersect on the P axis (Fig . 24, R~1) .  Analytically it assumes
the relation:

(2.15)
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The third criterion is due to Hornung and Kychakoff (Ref. 65) which
states that BR terminates when the R-polar intersects the P-axi s at its soni c
point , i .e. ,

01 
+ 82 = 0 (2.16)

Since the sonic point and the point of maximum deflection are usually very
close , it is in~ ractical to di stinguish between thi s criterion and the
detachment criterion , and hence only the first two criteria will be considered
here . One should note that the third criterion , the so-called sonic criterion,
lies slightly below the detachment criterion at very low Mach nuithers .

Hornung and K.ychakoff who suggested. the third criterion (Eq. 2.16)
found that two different criteria for the terminations of RB exist , one for
steady flow arid one for nonstationary flow . They claim that their recent
finding was substantiated by their experiments in both a wind tunnel and a
shock tube. Their data for nonstationary flows (Refs . 6~ and 74) do n~ agree
with the “mechanical-equilibrium” criterion . One should also keep in mind
that Henderson and Lozzi’ a experiments], data revealed. a “remarkable anomaly”
between the results obtained in steady and. nonstationary (or pseudo-stationary)
flows, where BR was obtained in a region where the “perfect-gas theory” (for
bo th ~. cri teria) has no BR solution . Henderson and Lozzi (Ref . 60) resolved
this disagreement for their shock-tube data by arguing that the BR-like con-
figurations were really undeveloped DMR - configurations , where both the triple
poin ts as well as the slipstreainz and. the shock waves t~ipical of a well-
developed DM1~ were too small to be observed. (They estimate the primary and
secondary confluences as being 0.1 xmn apart.) A few experiments conducted in
the present work in order to verify their argument , using an optical magnifi-
cation of 5.14 for N5 ~ 14.7, ~~ = 600 arid a wedge 8.5 cm long, failed. to show
any sign of a DMR .

In all the experiments claimed by Henderson and Lozzi to be undeveloped
DMR-configurations, the reflected. shock wave B is straight near the reflection
point. This indicates that the flow behind. B is supersonic (i~ > 1) ar-id hence
para.llel to the wall . However a DNR should produce subsonic flow. Consequently,
all the available evidence favours H-~rnung and Kychakoff’s (Ref. 65) conclusion
that the “mechanical equilibrium” criterion established. by Henderson and
Lozzi (Ref. 60) is inapplicable to nonstationary flows. Therefore, the detach-
ment criterion, i.e., the case where the B-polar becomes tangent to the P-axis,
Eq. 2.114 is the correct criterion for the termination of BR.

2.2.3.1 Change-Over Mach Ni,m]ber - Moc

It was - oted. that Kawasiura and Saito (Ref. 2)4) were the first to show
that the point of’ t~angency between the R-polar and the P-axis (the termination
criterion of RB) can lie inside or outside the I-polar (Figs. lOa arid lOb,
respectively) depending on whether the value of N0 is less or greater than a
certa. a change-over value - Moe. Unfortunately, their value for Moe = 3.203
(y..i.14) does not match their other variables p0/pj. = 0.1433 and ~~ = 141.5° which
result in M~~ 

= 2.198. Henderson and Lozzi (Ref. 60) pointed out that a mi sprin t
occurred and that it should read Moe = 2.203, which is in good agreement with
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the above values. Unfortunately, Henderson and Lozzi (Ref. 60) who quoted. the
value Mo~ = 2.23 in the text of their paper used. the number 2.40 -in the caption
of their Fig. 3, thereby adding to the confusion caused. by Kawamura and Saito’s
misprint . A different value, Mo~ 2.202, was recently calculated by Molder
(Ref . 81) for a perfect diatamic gas .

The value calculated here yields Moe = 2.190 (M6 = 1.1450, and o~,, = 
14 8 .550)

f o r  a perf ect  diatonic gas ( ‘v = 1.14) arid. Mc~ 
= 2.185 (N5 = 1.1449 and e~ 48.1460)

for imperfect nitrogen at P0 = 15 torr and T0 = 300 K. The significance of real-
gas effects (vibration and vibration-rotation coupling) even at this low Mach
number (N5 1.145) is clear, albeit small. In the case of a perfect monatoxnic
gas (y = 5/ 3)  the value calculated by Molder (Ref.  81) is 2.470 emd our calculated
value of N~~ is 2.1453 (M5 = 1.5140 and 

~~~~ 
= 51.13 ). The present value applies

to imperf ec t  argon at P0 15 torr and. T0 300 K.

The shock-polar combinations that correspond to Moe for perfect and
imperfect nitrogen and argon (or any monatomic gas) are shown in Figs . h a , lib
and llc, respectively.

When BR terminates the reflection can be achi eved only by a three-
shock confluence, i . e . ,  a triple point (T) .  In nonstationary flows three types
of reflection can occur depending on the flow Mach number behind the reflected
shock w ave R.  One more difference between these three types of reflection
and. RB lies in the fact that they all make the flow near the hedge surface
(behind the Mach stem) subsonic (143 < 1), while in the case of an RB the flow
near the wall (behind the reflection point) is usually supersonic.

2.3 Single-Mach Reflection ( SMR)

When the flow behind the reflected shock wave R is subsonic , i. e . ,

~2 < 1, in a frame of reference attached to the triple point T, it can negotiate
the wedge surface by turning subsonicahly. Consequently, there is no physical
need for additional shock waves.

The wave configuration of an SMR is shown in Fig . 12. The frame of
ref erence is attache d to the tr iple point T and it moves along a straigh t line
(the triple point trajectory at ari angle 

~~
.) with a constant velocity U0 = Us

cosec 
~~ 

where 
~o 

= 90° - &~j  (Ow = Ow + x) is the angle of incidence between
the incident shock wave I and the oncoming f low and x is the angle between the
triple point trajectory and the wedge surface . Throughout this report %, will
be referred to as the effective wedge angle, whereas ~ is the actual wedge
angle . The Mach stem N lies ahead of the incident shock wave I . It is normal
to the wedge surface but not necessarily straight .

The flow in state (o) can reach the region bounded by R arid M by
passing through two shock waves I and R or only one shock wave N depending
upon whet~er it is above or below the triple point trajectory How ever , gas-
dynamic considerations imply that the gas must be compressed to the same
pressure , and must move in the same direction on either side of the slipstream.
Consequently, all other thermodynamic properties such as entropy, density,
temperatur e , etc , are different giving rise to a slipstream S. It divides
the two reg ions of equal p ressure and f l ow direct ion , but different thermodynamic
states.
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2.3.1 Analytical Formulation

The shock waves I , R and M are again treated separately, using the
oblique-shock-wave relations across each one of’ them . Consequently , the equati ons
of motion f o r  an S~~ are:

For I:

p0tan~0 
= p1tan( t~0 

- (2.17)

p0U0sin~ 0 
= p

1U1
sin(~ 0 

- e
~
) (2.18)

-
. 

P0 ÷ p0U0
2sin2~0 = p

1 
+ p1

u
1
2
sin

2
(~0 

- e~) (2.19)

h0 
+ ~~ U0

2
sin

2
~0 

= h1 
+ ~~~ U1

2sin2(~ 0 - o~) (2.20)

For R:

= p
2tan(th1 

- 02) (2.21)

= p2U2sin(~~ - 82) 
(2.22)

P1 
+ p1

U
1
2sin2~1 = P2 

+ p2U2
2sin2(~ 1 

- 82) ( 2.23)

h
1 

+ .
~~ U1

2sin2
~1 ~ h2 + ~~~ U2

2
sin

2
(~1 

- 82) ( 2 .2 14)

For N:

p0tan~3 
p
3
tan(q

3 
- 8

3
) (2.25)

p0U0sin~3 
p
3
U
3
sin(~ 3 

- 03) (2.26 )

P0 
+ p0U0

2sin2c~3 
P
3 

+ p
3
U
3
2
sin

2
(~ 3 

- 9
3
) (2.27)

h + ~ U
2sin2c~3 

h
3 

+ ~~~ U3
2sin2(i~3 

- 03) (2.28)

where the boundary conditions are:

P
2 

= P
3 

(2.29)

83 
= Oi 

4 82 (2.30)
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It will be shown in Section 2.3.2, using the (P, 9) -plane , that
two combinations ( families) of SI4R are possible , the usual one , in which the
reflected shock wave R redeflect s the flow so that 83 = 

~1 
- and one where

the flow is being further deflected while passing through R , i . e., 93 = 
~l 

+

For TMo < 1.55 in nitrogen (or M0 < 1.74 in argon) only the latter occurs , and
hence the plus sign (+) should. be used in Eq. 2.30 . In the range 1.55 < Mo
NO

~~~ 
in nitrogen (or 1.74 < N - ~ < Mo~ in argon) both combinations are possible .

For M0 > Mac only the first combination occurs and. hence the minus sign ( - )
should be used in Eq. 2.30 . (Note Mon wa.~ introduced. in Section 2.2.3.1, where
the corresponding value for argon or nitrogen can be found.)

The above fourteen equations have eighteen independent variables ,
namely Po, ~i, P2, P3, T0, T1, T2, T3, Uo, U1, U2, U3, ~o, ~] ., ~3, 81, 82 and
83. Consequently, if four of the eighteen parameters are known the remaining
fourteen can be calculated. The four chosen parameters are again the flow

— pressure P0 and. temperature T0 ahead of the incident shock wave, the flow
velocity Uo = Ussec9~, and the angle of incidence between it and the incident
shock wave I , Øo = 90-  e~,. Unfortunately, unlike the case of RB , the initial
conditions in shock tube experiments, namely Pa, To, M5 and Ow are not suffi-
cient to define these four chosen parameters, since e~r- = ew ÷ x involves one
more parameter 

~~
, which is not known before a photograph of the wave configura-

tion is obtained.

One way of overcoming the problem was suggested by Law and Glass
(Ref . 51) who developed a graphical method. to obtain x = 

~(Po, T0, Ms, 9w)
Their graphical method Was in good agreement with experiments (in o~~rgen)
only in the range 250 < °~ < 145° . However, the present analytical formulation
of their graphical method. gives better agreement (in nitrogen) , over a greater
range , i .e . ,  50 < e~ < 14~~’. For the range 9q < 5° a new method is suggeste d
(to be discussed. subsequently).

2.3.1.1 Prediction of Triple Point Trajectory Angle - x
As noted , a fairly good method. for predicting the valu~~ of x in the

range 25°< Ow < 4~ was developed by Law and Glass ( R ef s . 48 and 51), based on
the experimental observation that, except for very strong shock-wave diffractions,
the Mach stem M is only slightly curved. Consequently, they assumed a straight
Mach stem normal to the wedge surface , and introduced an additional independent
geometrical relation (Fig . 12) :

= 90’ - x (2.31)

This additional equation together with the fourteen equations of motion ( Eqs .
2.17 to 2.30) can now be used to find expressions of the form:

x = 
~~~~ 

T
0, 

N , ~~) (2.32)

This is done by keeping P0, T0 and Mo constants and changing 
~~ 

= 90’ -
÷ x)) in sma~1 steps , and then finally solving graphically for each set

of P0, T0, 
~~ 

and 
~~ 

the equations of motion (Eqs . 2.17 to 2.30) . Once these
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equations are solved x is calculated from Eq. 2.31 and. M5 from the relat ion
N3 = l40sir9o . Consequently, for a given value of Mo, each value of e~ 

+

(900 - 

~ -,)) corresponds to a value of M3 and x~ 
Repeating the above with

different values of Mo but still maintaining the same pressure and temperature
(~ 0 and T0) will produce a set of points (N3, x) for each (ow + x ) .  Thus ~vs M3 can be plotted, for constant (ow + x ) . Using these curves x can be
determined for any M~ and ow at a given P0 and T0.

Law and Glass (Ref . 51) found that this method is in good agreement
with experimental results only in the range 25° < e~ < 145’; consequently they
suggested that an alternative method should be developed for smaller wedge
angles .

An alternative method. for very small wedge angles ew < 1 4°  is
suggested in the following . Thi s method is again based on an experimental
fact , i . e •,  the fact that at small wedge angles an SW occur s even though
the flow behind the incident shock wave I is subsonic (M1 < 1) wrt the reflec-
tion point P (Fig . 4a) . It has been discussed previously that the triple-point-
trajectory angle plays a significant role (at these small wedge angles) when it
makes the effective wedge angle e~, = + x large enough so that Ml will always
be greater than unity wrt the triple point T (Fig. 4b). Consequently, one can
easily find a relation of the form 8- IMi =1 = e~ (Ms, P0, T0) for whi ch the flow
behind the incident shock wave is exactly sonic, i.e •, Ml = 1. Once this
relation is derived , x can be found from:

x = (2.33 )

It will be shown in Section 7.2 that for very small wedge angles the value of x
predicted by Eq. 2.33 is in better agreement with experiments.], result s than the
one obtained by Law and Glass (Eq. 2.32).

Note that although P0 and T0 do not appear explicitly in Eq. 2.33
as they do in Eq. 2.32 , the first term on the RIlE of Eq. 2.33 depends on the
initial pressure and temperature and. hence both methods of predicting ~ have
in general the form x = x(Po, To, N5 , ow) .

2.3.1.2 Perfect-Gas Solution

A significant simplification is obtained when the gas under considera-
tion is assumed to be calorically an-I ther~a1hy - perfect . The fourteen
equations of motion (Eqs . 2.17 to 2.30) are then reduced to the following six
equations (Ref . 31):

p P 1/21,2,3 
- i 27 M

2 
- 

- 1 
- 

1,2,3
- 

P0,1,0 
+ 1 ~0,1,0 y + 1 P0,1,0

- 
~. ~~ 1 ~~1 + ~~

“ - ~~~~~~~~~ + ~~‘ ‘
~~~~~~~ P0,10 

+ 1 P0,1,0 
-

( 2.34 , 35, 36)
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- l  2 7 + 1 ].
l + ~~ N y - l  P2 o _ o

- l  2 P1 + 2 N1 7 + l ~~~~ O
7 1 P1

9
3 

= 82 + 01 ( 2.38)

( 2.39)

This set of six equations involv~ nine variables,namely, 7, Mo~ N1, ~l, 82, 93,
P1/Po, P2/P0 and p3/p0. Consequently, three variables must be defined for a
solution . If y , N0 and P1/P0 are selected , 8]. and M1 can be i ediately cal-
culated from Eqs. 2.314 and 2.37, respectively, and the number of equations to
be solved is reduced to four .

A further simplification was made by Henderson who reduced this
system of equations of motion to a single polynomial of degree ten, with the
pressure ratio p3/p0 as the polynomial variable. The polynomial coefficients
were taken to be functions of 7, ~~ and P1/Po. A detailed description is given
in Ref . 31. Note that a polynomial of degree ten yields ten mathematical roots.
Henderson shows, however , that from simple physical consideration and. the
possibility of double root s, seven of the ten roots can be discarded. A
detailed discussion of the possible roots can be found in Refs. 31 and 48.

2.3.1.3 Imperfect-Gas Solution

When real-gas effects are considered the equations of motion (Eqs .
2.17 to 2.30) cannot be simplified. Consequently, the fourteen nonlinear
algebraic equations must be solved. A method of solution, very much the same
to the one utilized for RB (Section 2.2.1.2) was developed and solved for the
first time .

Note that Eqs . 2.17 to 2.30 consist of three similar se1~p 
- 

-

of four equations each (2.17 to 2.20 , 2.21 to 2.2 14 and 2.25 to 2.28) which are
treated separately. The final solution is obtained when Eqs. 2.29 and 2.30
are satisfied. The first set (Eqs. 2.17 to 2.20) involves the following eight
vari ables: Po, T0, U0 and 

~~ 
on the LHS and P1, Ti, U1 and 9~ on the RHS .

Since all variables on the LHS consist of initial conditions and are known ,
the BIlE can be solved and. P1, Tl, U1 and 01 obtained.

The second set (Eqs. 2.21 to 2.214) consis~~again of eight variables:
P1, T1, Ul and ~i 

on the LHS and P2, T2, tJ2 and 82 on the RIlE ; thus by assuming
a value of frj the LHS becomes known (P1, T1 and U1 were calculated in the first
set) and the RHS can be solved to give P2, T2, U2 and 82. The third set (Eqs .
2.25 to 2.28) also consists of eight variables: P0, T0, U0 and on the LHS
and P3, T3, U3 and 83 on the RIlE . It is solved in the same fashion as the
second set , i.e., assume a value of (~)3 so that the LHS becomes known (P 0, T0
and. U0 are the initial conditions) and then solve for P3, T3, U3 and 83. The
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correctly assumed values of ~~ and are those which will result in values
of P2, P-b , 9]., 82 and 83 that will satisfy the boundary condition s, i.e.,
Eqs . 2.2~ and 2.30. Fast convergence is assured by using the Newton-Raphson
method . A computer program (based on the above method) as well as a typical
output is given in Appendix C.

2.3.2 Graphical Solution (Shock-Polar Presentation)

An SW in the (P , 8)-plan e is shown: in Fig . 13. The B-polar does
not intersect the P/Po-axis , and hence ar~ RB is not possible . State (2)
behind. the reflected shock wave B , and state (3)  behind. the Mach stem M, in
the vicinity of the triple point T, are at the point where the R-polar inter-
sects the I-polar [state (2) on the R-polar and. state (3) on the I-polar), since it
satisfies the equations of motion (Eqs. 2.17 to 2.28) as well as the boundary
conditions (Eqs . 2.29 and 2.30) , i .e. ,  83 = 8i - 82 and P3 P2. Note that
since the Mach stem is not straight it corresponds to a small portion of I

• rather than single point (3) . see Law and. Glass (Ref .  51) for details.

It was stated. earlier that a necessary condition for an SW to
exist (once RB is terminated.) is that the flow behind. the reflected wave R
(Fig . 12) is subsonic (~~ < 1) wrt the triple point T. This means that the sub-
sonic , portion of R-polar ( i .e . ,  the one above the sonic point SB) intersects
with the I-polar . One should note that if t~ e intersection was on the supersonic
portion of R (i.e., below SR) the flow behind it wcu.ld. be supersonic (I~ > i)
and since 82 ~ 0 an adLU.tional deflecting mechanism ~~uld be needed to turn
away this supersonic flow from the wedge surface, or make it subsonic before
colli ding with it.

When Mo < Moc, I .e., when the R-pola.r becomes tangent to the P/F0-
axis inside the I-polar (FIg . lOa) , the termination of RB will always be
followed by an SW. In this case , the B-polar will intersect the I-polar
at a point above its point of maximum det1e~tion, i.e., on che strong-shock
family portion. In this range (~~ < Moe) the I and R-polars can take on two
basically different combinations. In one of th~~ the solution in the (P, e)-
plane (Fig. 114a) indicates that the flow is zedeflecthd by B so that 83 = e2 < 8~,
while the other combination (Fig. 114b) giv~s 03 = 02 > 01 and hence the flow
is being further deflected. by R. The present modification of Eq. 2.30 ( the
boundary condition for the equations of motion) that was presented earlier was
made for this reason. 

-

The limiting condition between these two cases is the combination
where 83 = 82 81 (Fig . l14c) , for which there is no deflection through R (in
the viodni ty of the triple point T), i.e., R is normal to the streamlines . The analy-
~is ~~~~~~~ furthermore , ths.t for M0 < 1.55 in nitrogen and. M5 < 1.7 14 in argon ,
bnly the second, combination of the I and R-polars (the one in which 83 = 82 > 81)
occur s, while for 1.55 < No ~ Moc in nitrogen . and 1.714 < M o M0~ in argon ,
both combinations are possible.

When Mo > Moc ( i .e., the R-polar becomes tangent to the P-axis outside
the I-polar, Fig. lob) two interesting cases exist. In one of them Mo~ < N o  <
2. 140 , 2. 141 and 2.69 for perfect nitrogen , imperfect nitrogen and argon, respec-
tively, the B-polar intersects the I-polar in the portion between its soni c point
~~ and its point of maximum deflection, inj~ (Fig. 15) , which corresponds to the
stth~ onic portion , and hence ~~ < 1 and an SW will still occur .
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For higher values of No, the termination of RB will result in 1+~ > 1
and hencQ an SW i~ not possible . However , if o~ (or ow) is decreased and
No kept constant the R-polar moves away from the P-axis, and a situation is
reached in which once again the B-polar intersects the I-polar at its sonic
point s (Fig . 16, Rjjj. Upon a further decrease of O~ , the B-polar intersects
the I-polar bQlO~ its ~onic point (Fig . 16, Rjjj) and. hence again an SW is
obtained. Thus one can conclude that any value of N0 can be matched with a
corresponding value of 

~~ 
= 900 - (9~ ÷ x )) for whi ch I.~ = 1. The signi-

finance of this family of SNR-solutioz~ lies in the experimental fact that it
corresponds to an SW in which the slipstream is curled back , perhaps owing
to the extremely high flow deflections involved. (For exaa~1e, on Figs. lOa
and lOb, 81 1’ and 5°, respectively, while in Fig. 16, o~ > 25°).

2.3.3 Termination of Single-Mach Reflection

As- deaaribed. earlier , the SW can be viewed as a reflection process
through a three-shock-confluence (I , R and N),  by which the flow behind. B is
made subsonic (I~ < i) ,  wrt the triple point T , and hence can negotiate the
solid. surface . However, when the Mach nim~ er of the incident shock wave is
increased, the flow Mach number behind the reflected shock wave B is also
increased , and finally it exceeds the value of one. Consequently, an SW is
no longer sufficient, since again we have a supersonic flow (i~~ > 1) directed
towards a solid surface (02 ~ 0 always) . On the (P , 0)-plane this means that
the intersection point between the I and R-polars lies on the supersonic part of
the R-polar (Fig . 16, Ri). Physically, this supersonic flow will have to be
made either parallel to the solid surface or become subsonic before it reaches
the wall by means of a shock wave (or a compression wave) so that it can nego-
tiate the solid surface subsonica.lly. In practice the second process occurs
and a CW forms , where the flow Mach number behind the reflected shock wave
is reduced by passing through a compression wave. At higher values of M2
thi s compression wave ~~~czues a ~th od~ wave and CNR terminates. Henderson and
Lozzi (Ref. 60) were the first to suggest this sequence of events, i.e., a
band of compression waves which can converge to form a shock wave. The
existence of this compression wave was first verified experimentally duri ng
this study . The reflection associated with the compression wave Is a C1vIR
while the one as~ociated with the shock wave is a DNR .

2.14 Complex-Mach Reflection ( CNR)

The CW shock-wave configuration is shown in Fig . 1.. Unlike the case
of an SW where the reflected shock wave B has continuous ( smooth) curvature
until it finally terminates at the surface , here the curvature reverses di s-
continuously. (In ~~~e CW only • a. smooth reversal of• curvature takes place.)
As a result a kink forms in the rdflected. shock wave. R is straight between
the triple point T and the kink K, but the remaining portion curves continu-
ously until it terminates at the wall . It will be shown that a compression
wave is located at the kink. When it converges to form a shock wave in DNR,
the kink becomes the second triple point.

2.14.1 Graphical Solution (Shock-Polar Presentation)

As mentioned previously, the existence of a band of compression
waves suggested by Henderson and Lozzi (Ref . 60) was verified experimentally
during the present study. In order to solve the problem analytically or
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graphically it is assui~~d that this compression wave exists between the kink
K (Fig. 17) of the reflected wave B and the sli1 stream S. Consequently, the
flow from region (2) is compressed (by passing through this cc~~ ression wave)
to a new higher-pressure state (regi on 5) .  Furthermore, we impose the boundary
condition that the pressure and flow direction in states (4) and (5) are equal ,
and hence they correspond. to a single point in the (P , 8 )-plane .

The solution is no longer as simple as in the RB or SW case, since
the kink and its vicinity should be treated from a frame of reference attached
to the kink. Thus the solution must be done in two steps: first , when the
fraa~ of reference is attached to the triple point T , and. then when it is
attached. to the kink. Consequently, the relative motion of the kink wrt the
triple point should be known (see Appendix D) .

Figure 18 represents the graphical solution of a CMR . States (o) ,
(1), (2) and. (3) are found in the same way as for an SW ( see Section 2.3.2) ,
and states (i’) ,  (2 ’)  and ( 3 ’ )  are found in the same way as for a DW ( see
subsequent discussion in Section 2.5.2) .

Once state (2’) is found, the (p , 8)-curve of the compression wave
should be drawn from (2’). Unfortunately, real-gas effects prevent derivation
of an explicit algebraic formula of the (p , 8)-curve of a compression wave. In
order to overccai~ this difficulty, assume that the Qompression process is perfect
(reasonable for such a weak compression) and make use of the Prandt1-~~yer func-
tion, -e + const = v(M) , where 0 is the deflection angle measured wrt the
direction of a given flow with Mach number N, and v( M) is the Prandtl-1~~yer
functior~~Ref. 27).

Let any point inside the compression be denoted by i so that:

+ con~~ = v(M~) (2. 140)

where:

v ( M )  =~J~ tan~~~~a(M2 - 1) - tan 1~/~~ - 1 (2.141)

Equation 2.40 holds also in state (2’), Fig. 18, and hence :

-e~~ 
+ con~t = v(!~~)

Defining e~ = 0 results in:

const = v(M ~) (2.142)

Inserting Eq. 2.142 into Eq. 2.140 gives:

• 
= v(s)  - v(M

1
) (2.143)
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The isentropic relations

= [ 1 + 
1 
M
i

2 

~

az’e employed to obtain: -

Pi _ l + 7~~~l (~~~)
2 7’l

P2

(Note that P2 
= P~~.) Rearrangement of the above equations results in:

( 2. 1414)

Inserting Eq. 2 .~44 into Eq. 2. 143 yields a relation of the form:

= vO’~ ) - r(z’~, P2, P~,) (2. 145)

where

v(~~ ) =~~~~tan~~.Ja[(~~)2 - 1) - tan~~~j~~~ ) 2 
- 1

and _____________________________________

I
f(~~~, P2~ Pj) =.~~~~~ tan 1

.ja { [~ ~ 
+ (~~ ) 2 ] ~ ~ 

- a }

Since M~ and P2 are known [state (2’) was already found), Eq. 2. 145 represent s
the (P , 8)-relation across a perfect compression wave .

Once this curve is drawn from state ( 2 ’ ) ,  states (14) and (5) are
obtained. at the point where this curve intersect s the R ’ -polar . State (14)
is on the R’-polar while state (5) is on the compression wave polar.

Note that since the ca~ ression wave under consideration is weakit can be replaced by a weak shock wave . For this case , the CW graphical
solution becomes the same as the DW graphica]. solution that is given in
Section 2.5.2 . 
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2.4 .2 Termination of Ccm~ lex-Mach-Bef1ection

It has been found. in the present study that when the flow Mach
number, Iv~~, behind the reflected shock wave B becomes supersonic in a frame
of reference attached. to the kink K (Fig . 17), then CW terminates resulting
in DI4R (Fig . 19) . The kink K becomes the second triple point Ti. The portion
of the reflected shock wave B, between T and Ti, is straight. The two triple
points and their flow and wave systems are shown in Fig. 20. In the following
the appropriate expression for ~~~~, i .e. ,  the flow Mach number behind the
reflected shock wave in a frame of reference attached to the kink is developed.

Consider Fig . 21 in which the kink K (or the second triple point
Tl) moves with the velocity VT1T (or vj~ ) wrt the first triple point T. The
flow velocity behind the reflected shock wave R, ~~ 

E u2 is directed along
a line that is inclined with an angle ~]. 

- 82 to the direction of motion of
the kink. Consequently, using simple vector analysis and the (x, y)-coordinate
system shown in Fig. 21,

= V~~ cos(~ 1 
- 02) - VT T

v sin(~1 - 02)2T1 2]~

where and are the x and y components of the velocity of the flow
behind R wrt the kink K or the second triple point T1. Thus the absolute flow
velocity wrt K becomes:

Jv~~~J = [V~~ + 1 (2 
- 2V

~~
VT T cos(

~ l 
- 82))

Rearranging the above expression results in:

r VT1T 2 7 VI~1~ 1/2

V~~~ 
= V~~ [ i + (

~~
) - 2 

~ ~~
) cos(~ 1 

- 82) 1

and in terms of Mach numbers one ~~tains:

VT1T 2 VT1T 
1/2

= 
~~~~~ [1 

+ (i— ) 
- 2 (v— ) cos(

~ l 
- 82)]  (2. 146)

The velocity of the second triple point T1 wrt the first triple
point T , developed in Appendix D, is given by:

VT T  =?  cosec(~ 1 + - 81)U5 
(2.147)

Note that the above expression for v~j~ ij  ( see Appendix D for details) is based
on an analytical method for predicting the location of the kink originally
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Suggested by Law and Glass (Ref S.  148 , 51). Their method was found to be in
very good agreement with experiments only in the range 9w < 1400

, while for
the range Ow > 14o the agreement became progressively worse (Ref. 14 6) .

2.5 Double-Mach Reflection ~~~W J

When the flow Mach nu~~er M~ behind the reflected shock wave R (In
a frame of reference attached. to the second triple point Ti) exceeds the value
of one, a shock wave is formed at the kink of the CIvIR , and consequently a DW
is obtained. The shock wave configuration of a DW is shown in Fig. 19. The
additional shock wave B1 results in a second triple point Ti, and a second
slipstream Si, since the flow behind Ti is obtained from state (1) by passing
through either one shock wave (Ni) or two shock waves (R and Ri). The first
triple point traj ectory angle is again x while the second triple point trajec-
tory angle is x ’~

States (i), (2) and (3) can be found by solving Eqs. 2.17 to 2.30.
It is worth mentioning that the major assumption behind Eqs. 2.17 to 2.30 is
that states (o) , (i) , (2) and (3)  are uniform. Consequently, one can conclude
that they describe the first triple point of a DW better than that of an SI~
since in a DNR state (2) is supersoni c and it is obtained from state (i) through
a straight shock wave (R) . Recall that in the case of an SMR , R is curved and
hence the flow behind it is not uniform . Note that Eqs. 2.17 to 2.30 are
applicable only in the vicinity of the triple point with a confluence of curved
shock waves~ and further away from it when the shock waves are straight.

2.5.1 Analytical Formulation

The analytical formulation is based. on the similarity between the
flow fields associated with the first and second. triple points . Consider
Figs. 20a and. 20b , which describe the flow fields in the vicinity of T and
Ti respectively. Let the notation a b mean that s~imbo1 ‘b’ in Fig. 20b
is equivalent (analogous) to s~mbo1 ‘a’ in Fig. 2Oa; thus one can write:

state (i) state (o), state (2) state (i), state (5) state (2),

state (14) state (3) ;

R I , 
~~ 

R , N1 M, s1 S;

tJ~ ~ U0, tJ~ — U1, U5 ~j
2

~~ U~4 — U3;

= , = , =— 

~~ ~5 U~~~~~ tJj
4 

—

and finally ,

and (~~~.

Applying thi s analogy to- Eqs . 2.17 to 2.30 will result in the equations of
motion for the second. triple point .
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For R:

p1tan~j 
= p2tan(~~ - e~) (2. 148)

~1U~ sir1i~j = p2U2 sin( i~j  - e~) (2.49)

P1 + P1Uj
2
sin

2
~j = P2 ~~ p2U~

2sin2(~ j  - e~) (2.50)

111 + ~~ uj
2sin2

~j  = 
~ 2 

+ 
~~~ U~

2sin2
(~ j  - e~) (2.51)

For B1:

~~~~~~~ = p
5tan( c~~ - e~) (2. 52)

p2U~sin~~ ~59ain(~~ - e~) (2. 53)

P2 
+ p2U~

2sin2
~~ = P5 

1- p
5

U~
2sin2(~~ - e~) (2.514)

h
2 

+ ~ U~
2sin2

~~ = h5 + ~~~ 9
2sin2( i ~~ - e~) (2.55)

For

p1tan~4 = p4tan(~~ - e~) (2.56)

P1Uj sin~4 ~~U~sin(~~ - e~) (2. 57)

P
1 

+ ~1U~
2sin2

~~ P4 + p4U~
2sin2(~ 4 - e~) (2.58)

h + ~ U~
2sin2

~~ = 114 + ~~~ U~
2sin2(~ 4 - e4) ( 2 . 5 9)

And finally the boundary conditions are:

P
5 

= P~ (2.60)

= (2.61 )

Since thermodynamic properties do not depend on the frame of reference
of the solution pj = 

~~~~ 
P2 = P2~ etc, and. hence the prime was om itted fro~ the

thermodynamic variables in the above equations.
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It has been shown in Section 2.3.1.3 that once P0, T~ , Uo and cv -)
are known, Eqs . 2.17 to 2.30 can be solved. Thus , in order to solve Eqs.
2.148 to 2.6l i Pi, Ti, Uj and. ~j should. be defined. In the following expressions
for uf and i rj  are developed. tNote that P1 and T1 ai~e known from the solution
of Eqs . 2.17 to 2.30) .

Consider Fig . 21 in which the second triple point T1 moves along the
x-axis (defined by the direction of the reflected shock R) with the velocity
VT1T wrt the first triple point T . Simple vector analysis yields that :

= V
iT
C05

~l 
- 1(

T1
T

= 1(1T~
1
~~1 -

where ~~~~ and. 
~~T1 are the x and y components of the veloci ty of the flow in

state (i) wrt the second triple point Tl, i .e. ,  the x and y c~~~ onents of
Uj. The value of Uj then becomes:

= (U1
2 

+ 

~~~T 
- 2UlVT T cos~~ ) V2

whereas the value of is:

-l / U1sin~
~~
‘ = tan I
1 

~ 
U1

cos~1 - VT T1
Inserting the value of VT1T (Eq . D .3 in Appendix D) into the above two equations
results in:

u~ = (u1
2 

+ L
2
U
2 

- 2L U1U 5Cos~1) l/2 (2.62)

~ 
U sin~

= tan 
~~U1cost~1 

- L U )  (2.o3)

where L = Lj/L5 and Lj and L3, defined in Fig . D .la , should. be measured from
an actual interferogram .

It is mentioned in Appendix D that Law and Glass (Ref . 51) developed
an anaJ.3jt ical method to predict L in the range e

~ <
1400 (Eq. D.l2) . Using their

method one obtains:

L = ~2 cosec(~~ + - e
~
) (2.64 )

25

I
- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - - - - - ----
~ 
.
~~- - -~~~~

• 44



,

Ir. - ~~~~~~~~~~~~~~~~~~~~~~~~~~~ •V’ 4 - _. _ _ , • . __,, . 
— —• -~~~~ -

Thus for the range ~~~ 40 Eqs. 2.62 and 2.63 reduce to:

= [u 1
2 + (.~2 )

2
U5

2cosec2(~~ + - o~)

- 2U
1
U (-.2

) 
cosec(~ 1 + - e1

)cos~1 ]

-1 
U
1
sin~1

q~~=tan [ I
U1cos~1 

- — U cosec (~1 + - e~)

A further simplification can be made using Eq. 2.18 and the relation U5 = U0sin~0
that together result in

.S U5 = U
1sin(~ 0 

- e
~
)

Inserting this relation into the above expressions for Uj and c5j resul ts in

r sin2( c~ - e)
~ 

sin(~ - 01) cos~1 1 1/2
u~ = u1 I 1 + 2 

° 
- 2 ° I (2.65)

L sin + - e~) sin( I~1 + - 8~
) J

1 sin~
)

= tan 
[ cos~1 - sin(~ 0 - e1) cosec (~1 + - 

~~~ 
] (2.66 )

Using trigonometric functions Eq. 2 .~6 can be finally reduced. to

~) i = ~~i
+
~~o - 8 i ( 2.67)

Since all the variables in Eqs . 2 .66 and. 2.67 are known once Eqs .
2.17 to 2.30 are solved., the 14 required parameters , P1, T1, Uj and. ~rj , for
solving Eqs . 2.148 to 2.61 are analytically determined. It will be shown later
that in spite of the limitation on the wedge angle (ow < 1400) that was intro-
duced by the use of Eq. 2.64 in the foregoing development, Eqs. 2.66 and 2.67
can almost always be used since the D~~ domain is centred. in this angular
~enge - • 

-

2.5.2 Graphical Solut ion ( Shock-Polar Presentation)

The graphical solution of DMR is akin to CMR described in Section
2.4.1. The solution is again done in two steps , first with the frame of
reference attached to the triple point T and then when it is attached. to the
second triple point Tl. The relative-motion relations of the second triple
point Ti wrt the first triple point T are given in Appendix D. Once they are
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known the solution is as follows . First attach the frame of reference to
the triple point T and. draw the I and R-polars (Fig .22a) in the same way as
described. in Section 2 .3 .2. States (2) an~1 (3) are at the point where the I
and. R-polars intersect. Note that the flow directions in states (0), (1),
(2) and (3) are all measured wrt the first triple point trajectory, i.e.,
00 = 0, since the flow in state (o) moves p~.ralle1 to the first triple pointtrajectory. Consider now Fig. 22b in which 8 and. 8’ are the angles corresponding
to the same directior. measured ir. two different frames of reference T and Ti,
respectively . Simple geometrical consideration yields:

8 0’ + (x ’ - x) (2.68)

or alternati~re1y:

8 = e ’ + (
~~ 

- ~~‘) (2.69)

where ~o = 900 - Sw - x and ~~ = 90’ - ow - x ’ (~~ is given by Eq. D.l14).Rearranging Eq. 2.69 results in:

= - (
~~~ 

- 

~~
) (2.70)

Consequently, state (1) in a frame of reference attached to Ti is at Bj = 
~1 

-

(~~ 
- 

~~) and. Pj = P1 (no change in thermodynamic properties by changing a
frame of reference) . Once state (i ’) is known, the R ’ -polar (i.e •,  the R-polar
in a frame of reference attached. to Ti) that corresponds to Mj (Eq. 2.65) ,
Pj = P1 and. T~ = T1 is constructed. States (2’) and (3 ’)  are at the point
where a constant pressure line drawn from states (2) and (3) intersects the
R ’ -polar . Once state ( 2 ’)  is known the Ri-polar (k ’ , P2’ = P2 and T2’ = T2)
is drawn. •States (14) and ( 5)  (Fig. 19) are at the point where the Ri-polar
intersects the R ’ -polar . The initial conditions for the case illustrated. in
Fig.2~a are N5 = 3.681, es., =14o , x = 14.80 , P0 = 15.3 torr and T0 = 297 .24 K.
Consequently the corresponding values for the I polar are No = 5.189, P0 15.3
torr and. T~ = 297.24 K. The first triple-point solution results in M1 = 1.9824,

= 239.6 torr , Ti = 1062.2 ~C, P2 = 474.2 torr , T2 = 1302.9 K , e~ 
= 32.260

and 
~i 

= 143.100. Therefore the R-polar that corresponds to N1, P1 and. T1 is
drawn from a point S = oj. on the I polar. Using the above listed values and
Eq. D.l24 results in ~~ = 142.60 and hence (1’) is shifted by 2 .6° ( c ~O -
from state (i) along a constant pressure 1~ne. Wi th the help of Eq. 2.~~ and
the above values one finds that Nj = 0.8237 x M1 = 1.6314 and the R’ -polar
that corresponds to Nj, P1 and T1 is drawn from state ( i ’) .  States (2 ’) and
( 3 ’)  are at the point where a constant pressure line drawn from (2) and (3)
intersects the R’ -polar , i .e.,  Pç~ = P2 = 14.71+.2 torr. The present solution
from the R ’ -poiar yields P~ = 147I~.2 torr , T~ = 1269.6’ , M~ = 1.125 . Conse-
quently a polar corresponding to these values was drawn from states (2’) and
(3’) to obtain states (4’) and (5’) or (14) and ( 5)  at the intersection of this
polar with the R’-polar. Note that although T2’ ~ T2 probably due to the useof Eq. 2.614, the relative error is only 2.55% .
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2.5.3 Prediction of the Second. Triple-Point-Traj ectory ~~g~e x’

The second triple-point-trajectory angle x’ can be expressed by
using Fig. D.la as follows:

x ’ = 90° - - (2.71)

Inserting the value of ~~ (Eq . D.114) into Eq. 2.71 results in:

p0

x ’ = 90° - - tan~~ [ 
- 

I (2.72)

cot~ - —~~ cot(~~ + -

Thus for a set of given initial conditions F0, T~ , M5 and. ~~ 
the value of x

(the first triple-point-trajectory angle) can be calculated using the appropriate
method (given in Section 2.3.1.1). Once x is known, 

~~~~
, 0j and p

~ 
can be found

by solving Eqs . 2.17 to 2.30 . (Note that qo = 90° - - x and 1v1r~ = N5cosec~~) ,
and consequently 

~~~
‘ can be calculated. from Eq. 2.72 .

It should be mentioned. again that although thi s method. of predicting
x’ is limited to os., < 140° ( see Appendix D for details) i t  can be used here
since the DNR-domain exists mainly in this range (see subsequent discussions) .

F Recall that 1~ endix Dwas developed in general for the kink K of a CNR as well
as the second triple point T1 of a DMR . Consequently thi s method. of predicting
x ’ is applicable also for a CNt~ f or which x’ is defined as the kink trajectory
angle .

2.5.14 Termination of Double-Mach Reflection

Following the gasdynamic reasons for the formation of the kink in a
CM1~ (i .e . ,  termination of sNR ) where the flow in state (2) behind R (Fig . 12)
became supersonic wrt T , and. then the formation of DNR (i . e .,  termination of
CMR) when the flow in state (2) became supersonic wrt K (Fig . 17) , one might
assume that if the flow Mach number in state (24 ) behind. N1 exceeds the value of
unity wrt the second triple point T1 (Fig . 19) a new kink will form on Ml and.
DNR will terminate . If the flow in state (24 ) becomes supersonic wrt thi s new
kink a trip1e-Mach~~f1ection (TMR ) can form .

In order to verify the above hypothesis, reflections must be obtained.
using very strong incident shock waves as well as long compression models in
order to allow the shock wave configuration to develop to a significant size.

Unfortunately, experiments with high Mach numbers (N 5 > 8) involve
the risk of damaging the interferoinetric-quality windows. Consequently it was
not possible to verify the existence of TI~~ in the present facility.

2.6 Nonstationary-Oblique Shock-Wave Reflection in (M 5, e~~)-Piane

The formation and terminatio~i criteria for RB , SMR , CMR and DNR
having been established. can be shown on the (M5, 9~,)-p1ane to give the domains
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of the different reflection processes and their boundaries . A necessary
condition for a reflection to occur is that the flow behind the incident shock
wave I must be ~xpersonic (Mi > 1) wrt the reflection point P (in the case of

or the triple point T (for the other reflections) (Figs. 14a and 4b , respec-
tively) . Thus the (Me, e~ ) -plane t (Mo, ~o)-plane ) can be divided into two major
domains . One of them corresponds to Mi < 1, where shock-wave reflection is not
possible and the other corresponds to N1 > 1 where shock reflections occur.
This region of shock-wave reflection is then divided into four domains corre-
sponding t~o the four reflection processes , i.e., RB, S~~ , CMR and DMR .

The criterion for predicting the termination of RB makes use of the
boundary condition that the flow downstream of the reflection point (Fig. 7)
must be parallel to the wall , i .e.,  

~2 + ~l 
= 0 (Eq . 2.9) - When this condition

is violated ( i .e . ,  ~o increases to a point where ei exceeds the detachment angle
(e~ ) in state (1) (Fig. 7), BR terminates. Therefore , the termination criterion
is:

01 +92m
g 

~2.73)

When BR terminates, 3 different types of reflection, i .e. ,  SW, CMR
and DMR , can occur depending on the Mach number of the flow behind. the reflected.
shock wave R.  As long as the flow behind. R is subsonic wrt the firs t  triple
point T , an SW occurs. When this flow becomes supersonic wrt T, SW terminates
and a CW forms . Consequently, the termination criterion for SMR and the forma-
tion criterion for CW is:

142 = 1 (2.724 )

CW terminates when the flow behind B becomes supersonic wrt the kink K. There-
fore the termination criterion for CNR and the formation criterion for DW is:

N’ = 1 (2 . 75)

It is worthwhile mentioning that the line M~ = 1 corresponds approximately to
N2 = 1.30 in both nitrogen and argon . Alternatively one may use the following
empirical criteria for the existence of SMR, CNR and DNR in nitrogen and argon .
SW occur s only if:

< a. (2.76)

A CNR takes place when:

~ < 142 < 1.3 (2.77)

A DMR results for all

> 1.3 (2.78)

In the following the domains of BR, SW, CI4R and DNR in the (!4~ , e~)-plane are given. Note that 
~ 

= ow + x in the domains of SW , CMR and DMR
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while in the RH domain = 0~ since,x 0 by definition. Note also that
since Mo = N6 secO~ and ~~ 

= 90’ - one might ass~~e that the reflection
domains apply to steady flows as well. However, it will be shown later that
in a steady flow CMR and DNR cannot occur due to geometrical limi tation , and
that the termination cri terion of R~. i c  :~ ±~ --re’t~ to that des.~ribed by Eq.
2.73 . Therefore the following domaix~; ar~ f~~ :. o~~~ ationary flows only.

2.6.1 Regions and Transition Boundaries in a ~iatomi c Gas-Nitrogen

The domains of RB , SW, C1’IR, D~~ ~~i NH a..~id the boundaries between
them in the (Me , o~,)-plane for nitrogen are shown in Fig. 23. The dashed
boundary lines are for a perfect gas (y  = 1)4 ) while the solid lines account
for real-gas effects (vibration , rotation-vibration coupling and dissociation )
with four different initial pressures: P0 = 1, 10, 100 and. 1000 torr and. a
constant initial temperature T0 = 300. It ca~- be seen that the i~~ erfect-gas
boundary lines start to diverge from those of a perfect gas at very low
incident shock wave Mach numbers owing to temperature-dependent vibrational
excitation . At higher values of N5 each b oundary line splits and diverges
according to its initial pressure as a result of dissociation . At still higher
shock Mach numbers electronic excitation and ionization would play a similar
role . Under such conditions the sharp boun dary lines whi ch exist for a perfect
gas between the domains of the differen t types of reflection are replaced. by
a multiplicity of lines depending on the initial pressure . For example , one
should expect an BR for M5 = 10 and. ~~ 245° when the initial pressure is 1000
torr or more and a DMR when P0 = 100 torr or less . As N5 approaches unity the
line 9i + 

~~m 
approaches the line Ml = 1.00. These two lines are coincident

at the origin N~ = 1, e~ = 0.

It can be seen from Fig. 23 that if the shock Mach number N5 is
fixed while varying the effective wedge angle &~ ( i .e.,  the actual wedge angle
eu), then different domains of reflection are encounte:eci . This figure clears
up some problems and di sagree~~nts between varicus investigators who reported
different sequences of events as one passed. through a range of wedge angles
°w for a fixed. Ms. They were unaware of the domains and. b oundaries presented
in Fig . 23. The different sequences of events ( and experimental and. numerical
investigations) are su arized as follows : l~0O < N 5  < 1.60 ( see point a)
BR - S14R (Bieakney arid. Taub , Ref . 10) , 1-Go < N 5 <2 . 6 9  ( see point b ) ,  BR -.
CNR -. SI4R ( Smith , Ref . 6),  for N~ > 2.69, BR -÷D~4R .-÷ CNR —. 5W ( Kutler et al ,
Ref . 63, and. Shankar et al , Ref . 64) . RH and SI~ ca-i occur with a proper
choice of &~, (or Ow) for any incident shock wave Mach number N5 , while the
other reflections are limited to defined values of Ms, e .g. ,  CMR occurs only
for Ms > 1.60 ( see point a) and DMH only for M~ >2 .69  (see point b ) .

2.6.2 Regions of Transition Bour.daxie~ in a ~~natomi c Gas-Argon

The domains of BR , SMR , C~~ , D~~. and NH , and the boundaries between
them in the (Ne, e~,) -plane for argon are shown in Fig . 224.  The dashed. boundary
lines are for a perfect gas (~‘ = 5/3) while the solid lines account for real-gas
effects (electronic excitation and. io:-~.ization ) with four different initial
pressures: P0 = 1, 10, 100 and 1000 tc~ r -~. -d a constant initial temperature

= 300 K.

Unlike a diatomic gas (Fig . 23) tre imperfect-gas boundary lines
start to diverge from those of’ a perfe~..t gas Only at relatively high incident
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shock wave Mach numbers. Therefore , the perfect-gas theory is adequate in the
range M~~< 5.36 for P0 2 1  torr , T0 = 300 K (the point where the RB imperfect-
gas boundary lines star t to diverge) . It should be noted, however , tha t as the
initial pressure (P0) decreases the corresponding imperfect-gas boundary line
splits at a lower value of M5. For example , the imperfect-gas boundary lines
for the termination of’ SW (}~~ 1) split at M5 7.62 , 8.15, 8.50 and 8.77
for P0 = 1, 10, 100 and. 1000 torr , respectively . Therefore , the sharp boundary
lines which exist for a perfect gas between domains of different reflections
are replaced by a multiplicity of lines depending on the initial pressure ( when
the temperature is fixed) . Consequently, one can expect an SW for M~ = 10 and

= 30 when P0 > 100 torr and. a CNR when P0 < 100 torr .

It can again be seen from Fig . 224 that if the incident shock wave
Mach number is fixed while varying the effective wedge angle 

~~~~ 
(or 9.~q) ,  different

domains of refl_ectjons are encountered. The different sequences of events are:
1.00 < N 5  < 1.85 , BR —, SMR (point a), 1.85 < M s  <3.17 , RH -4 0W .—t SW (point b ) ,
f~ r Ms > 3.17, RH —, DMR .-, CMR .-, SW. BR and SW can occur with a proper choice
of 0w (or °w ) for any incident shock wave Mach number 14~, while the other
reflections are limited. to definite values of 14~ , e .g . ,  CI4R can occur only for
Ms > 1.85 (point a) and DI4R only for M5 > 3.17 (point b ) .

3. FLOW DERLECTION I~ 0CESS OVER A WEDGE CORNER

It has been mentioned earlier (Section 2.1) that the diffraction
process in nonstationary flows also depends on the flow—deflection process of
the flow induced by the incident shock wave over the corner .

Con sider a planar shock wave propagating in a shock tube and denote
the state behind. it as ( 2 ’) .  For any given set of initial conditions (P 0, T0)
and. incident shock wave Mach number N , the induced flow Mach number ?~~~~~‘ as
well as the pressure and. temperature ~P2i and T2’) can be calculated.. Conse-
quently, the corresponding sonic deflection angle 9s2 ’ arid the angle of maximum
deflection ( d.etaclunent angle) ~~~ can be determined.

Thus the (N5, O~ ) -plane is now divided. into two main regions; one
corresponds to 142’ < 1, where the induced flow is subsonic and hence turns
over the corner subsonica.lly (Fig . 5a) , and. the other corresponding to ~~~~~~ ‘ > 1
where the flow is supersonic. The latter region is subdivided into three regions
of’ different flow deflection processes (Ref. 36);

(a.) 0 < e~ < 9s2’ for deflection through a straight and attached oblique shock
wave (Fig . Sb).

(2) 0s2 ’ < o < e~~, for deflection through a curved and attached shock wave
(Fig. ~~

(3)  0w > ~~~ where the deflection is through a curved and detached shock
wave (Fig . Sd).

Since the maximum separation between e~~’ and 8s2 ’ is usually very small (for
nitrogen at P0 = 15 torr and T0 = 300 K, e~~ 

- 052 ? = 0.63 ) only two regions
O < < 0152? , where the shock wave is attached, and. e~ > e~~~, where the shock
wave is detached , need be considered for practical purposes .
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3.1 Flow Deflection Process in a Diatomi c Ga~ - Nitrogen

The above-mentioned. regio:is of differe::;t :ypes of deflection processes
for ni trogen are shown in the (N 5, O~ )-piane in Fig. 2~~. The dashed line is
for a perfect gas (y = 1.13 ) .  while the ~c~i!d Lt~~~ n ’~ i~ r i~~erfe~t Litrogenwith different initial pressures (r 0 = 1, 10, 100 i~~~ 1000 torr) c.nd fixed
initial temperature (T0 = 300 K) .  One should. note that the line N~ i = 1 corre-
sponds to N5 = 2.068 (for a perfect gas) and 2.055 when vibrational energy is
included.. Since the difference between these t~ o v-~~uis of M5 is too small to
be plotted, only one line is shown . It c~-~ be ~~c:. f:’cn. Fig . 2 that the
deflection process depends strongly on real-gas effect s ( i . e . ,  initial pressure
Po for a given temperature T0) .  For M5 = 10 sn-i &~

. = 35° the flow will nego-
tiate the corner through a detached shock wave if F0 < 1 torr or through an
attached shock wave if P0 > 10 torr.

Since the imperfect-gas boundary line diverges from the perfect
gas even at the lowest value of M~ one must conclude that the perfect-gas
theory is not adequate and imperfect-gas theory should be used.

3.2 Flow Deflection Process in a Monatomi~ Gas -~~ .rgon

The regions of different types of reflection proce.sses for argon
in the (Me, Ow)-plane are shown in Fig . 26. Again the dashed. line is for a
perfect gas ~~ = 5/3) while the solid lines are for imperfect argon with
different initial pressures (P 0 = 1, 10, 100 and 1000 torr) and a constant
initial temperature (T0 = 300 K).

Unlike the case of a diatoni c gas ( see Fig . 25) the imper2ect-gas
boundary lines start to diverge from the perfect-gas lines at quite high values
of Ms ( i . e . ,  Ms = 7.36) and consequently the perfect-gas theory is adequate
in the range N5 < 7.36 . It is worthwhile mentioning that the line ~~~~~~ ‘ = 1
corresponds to M5 = 2.758 for both perfect and imoerfect gases.

The dependence of the deflection process on real-gas effects (at
high values of M5) is again clearly seen (Fig. 26). For M5 = 10 and Ow = 1O
the flow will negotiate the corner through an attached. shock wave if Po < 10
torr or through a d.etached shock wave if P0 � 100 torr . Note that unlike
a diatonic gas (Fig . 25) the region that corresponds to a deflection with the
aid. of an attached shock wave is very small con;ared to the regions of detached
shock wave and subsonic turning. Therefore. in general (unless tIi~i wedge
angles are very small and. the initial p:as~ ures very low), only two flow
deflection processes will be observed, i.e.; a subsonic tur::ing over the corner
or a turn wi th the aid of a detached shock wave.

24 .  SHOCK-WAVE D~~’FRACTION PROCESS IN N0NSTATI0~LARY FLOWS

The two independent phenomena di5’cussed in the previous chapters ,
i.e., shock reflection (Section 2) and. flow deflection (Section 3) interact
and give rise to the overall shock-wave diffraction phenomenon. To show thi s
process the figures corresponding to shock-wave reflection (Figs. 23 and 224
for nitrogen and argon, respectively) arid the figures for flow deflection
(Fig. 25 for nitrogen and Fig . 26 for argon) are superimposed. However, the
vertical axis of Figs. 23 and 24 and that of Fig3 . 25 and 26 are different .

32

~ 

-~~~~~~~~~ -~~~~~
-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-



~ 
- ~~~~~~~~~~~~~~~ 

._ — -
~
.-
~
--

~
,--.

~~
_.——-—- --

In Figs . 23 and 224 the vertical axi s is while in Figs . 25 and 26 it is
°w. The ~~fective wedge angle o~ equals 0~ 

( the actual wedge angle) in the
RH-regime and e~ + x elsewhere . Thus , the triple point trajectory angle x
should be subtracted from the appropriate curves of Figs . 23 and 224 prior to
any superposition.

The interaction between the shock-wave reflection phenomenon and the
induced-flow deflection process causes the reflected shock wave B to curl back
towards the model and terminates at the wedge corner on the shock- tube wall .
Since the shock-wave configuration is growing with time , the point where B
terminates at the shock-tube wafl moves towards the oncoming shock-induced
flow , therefore increasing the oncoming relative flow Mach number. Consequently,
the subsonic turning region shown in Figs . 25 and 26 cannot be established in
nonstationary flows. At the limiting case of a degenerated incident shock wave
(Ms = 1) the reflected shock wave becomes a Mach wave . Therefore , as there are
four reflection processes (RH, SW, CMR and DMR ) and two deflection processes
(an attached. or detached shock wave) , a maximum of eight different shock-
diffraction systems are possible .

In Section 2.3.1.1 two methods of predicting 
~ 
were suggested.. The

first one is due to Law and Glass (Ref. 51), where straight Mach stem (normal
to the wedge surface) is assumed, and the second, developed here, makes use
of the experimental fact that shock-wave reflections occur even at very low
wedge angles when the flow Mach number behind the incident shock wave I (Fig.
13b) is much smaller than unity (N1 < 1) wrt the reflection point. The methods
were discussed in detail in Section 2.3.1.1. Consequently only the results,
i .e . ,  x = X ( Gw , M5, Po, T0) for nitrogen and argon will be presented in the
following .

24.1 Triple-Point-Trajectory Angle in a Diatonic Gas - Nitrogen

The present analytical extension of the graphical method by Law and.
Glass ( Ref . 51) for predicting the triple-point-trajectory angle x was applied
to obtain Figs . 27 to 31.

The triple point trajectory angles x as a function of the incident
shock wave Mach number Ms with the effective wedge angle ~~ as a parameter for
a constant P0 and To shown in Fig . 27. The dashed. lines are for a perfect
gas (y = 1.13) while the solid lines are for an imperfect gas . Since the
perfect-gas model results in no reflection for e~ 22.2’ ( see Fig. 23W) only
a solid line (i.e., imperfect gas) is shown for thi s effective wedge angle .
It can be seen that the perfect gas result yields values of’ x greater than
for an imperfect gas . At low Mach numbers the imperfect-gas lines approach
those of a perfect gas. At higher Mach numbers and lower e~ the dependence of
x upon M5 becomes stronger for an imperfect gas due to dissociation. However,
for a perfect gas x is almost independent of Ms. (Note that at higher Ms the
dashed lines level out.)

At e~, = 
2400, the perfect gas gives an almost constan t value of x through-

out the entire region of N3. In other words , one night conclude that a wedge
angle exists for which x is independent of Ms (a constant) . This fact is more
clearly illustrated in Fig. 28 showing the variation of’ x with ~~ for a given M6.Only 3 lines (Ms = ~~, 7 and 10) are drawn for clarity. Note that all 3 lines
intersect practically at one point (Ow ~ 35.05°, x ~ 6.245 and e~, = 241.50’).

A reproduction of Fig. 28 for imperfect nitrogen is shown in Fig. 29; again only
3 curves are given (N8 = 13, 7 and. 10). The lines corresponding to M5 = 24 and 7
intersect at Ow = 245.38° and. x = 3.30 ’ ( i .e . ,  ~ = 248.68’) . A comparison between
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imperfect and perfect gas results is shown in Fig . 30. Only the lines that
correspond to N3 = 10 are shown . It can be clearly seen that the value of x
predicted using a perfect gas is greater than for an imperfect gas .

The dependence of x on N5 and ~~ is shown in Fig. 31. The dashed
lines are again for a perfect gas (y  = 1.13) while the solid lines are for
imperfect nitrogen . It can again be seen that the perfect gas values of x
are higher than those predicted by the imperfect gas theory . The discrepancy
between the two values (i.e., perfect and imperfect nitrogen) increases as
N6 increases and e~ decreases . Again the perfect gas lines i~vel out athigh Mach numbers and x is almost independent of Ms or x = X(Ow) only.

Law and Glass developed thi s method of predicting ~ and found that
it agrees with experiments only in the range 25° .~ e~..~ 45° (Ref . 51) . It
will be shown later that during the present research their method was found
to be in good. agreement with experiments in a much larger range of wedge
angles 5° ~ o~ < 135°. Thi s, we believe, is due to the fact that they solved
Eqs. 2.17 to 2.31 graphically, while during the present study an analytical
solution was obtained. Their graphical solution was rechecked and verified .
Since their method was found to be good. in the range 5 .� Ow � 45 an alter-
native method was developed for the range ~~ < 5 which was described in detail
in Section 2.3.1.1. The results are as follows .

Figure 32 represents the variation of the triple point trajectory
angle x wi th the incident shock Mach number N5 and the actual wedge angle
8w~ as a parameter, for very small wedge angles (ow <5’). Note that
although Fig . 32 is based only on the experimental fact that SW occurs even
for very low wedge angles (i.e •, x should be large enough to keep e~, abovethe line Nj  = 1 of Fig . 23; recall that x = ew - ~~, it resembles the
characteristics of Fig. 31, for small wedge angles 5°< es,, <2 0~ that results
from physical considerations. In both figures 

~ 
is a decreasing function with

increasing Ms and Ow and while, for the imperfect gas model , the dependence
of x upon Ms is prominent as Ms increases due to dissociation, the perfect
gas lines (dashed) level out so that x becomes nearly indmpendent of Ms, i .e . ,
x = x(ew) only (Figs . 31 and 32) .

13.2 Triple-Point-Trajectory Angle in a Monatomic Gas - A.rgon

The dependence of 
~ 

on N5 for fixed ~~ is shown in Fig . 33. The
solid lines for imperfect argon in ionizational equilibrium start to diverge
from the perfect-gas lines y = 5/3 ( dashed) slightly above N3 = 7. Conse-
quently, in the range 1 < M s  < 7  the ~e rf’ect-gas soluti on is adequate .

The perfect-gas lines level out as N3 increases making x independent
of Ms on x = X ( O~ ) only. Thi s can be more clearly seen in Fig . 313, in which
x is plotted against 0w for fixed values of N5. For clarity only 3 lines
are drawn (M5 = 13, 5 and 10) . All the lines intersect practically at one
point, Ow = 29.87’, x = 10 .22° ( i .e . ,  e~r = 130 .09’) . This value differs very
slightly from the corresponding value of a diatonic gas f ound earlier (e~, —
131 .500).

A similar plot for imperfect argon is given in Fig. 35. Again only
3 lines (N3 = 13 , 7 arid 10) are shown. Only two lines, those corresponding
to N5 = 13 arid 7 intersect (at Ow = 32.72’, x = 8.83°, e~ = L+i.55’) . Therefore
a wedge angle Ow does not exist for which x is completely independent of M8.
A comparison between perfect and. imperfect argon is shown in Fig . 36. It can
be clearly seen that the value of x predicted by perfect-gas theory is larger
than the one for imperfect argon .
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The dependence of x on M5 for given Ow is shown in Fig . 37. Aga.ir
the imperfect argon (solid line) starts to diw~rge from the perfect gas values
y = 5/3 (dashed lines) only for M5 > 7. Therefore the perfect gas values are
adequate in the range 1 <Ms < 7. The perfect--gas lir~es level out as M5increases, giving x = ~~ only . However , e~ e-ctroni~ c:~~~~~tio~ a:~~ ior~i~-
tion start when M~ > 7 and the depende~~ c of x i pon M3 ir w’~ -~~es for i~xp~rfe~t
argon.

The previous method for very low wedge angles was also used for argon
to obtai:~ Fig . 38. The solid 1in~s ar~ for imperfect argon i~ i. io~-ization
equilibrium while the -iashnd lines are for a perfe~t monatomi c gas . It can
again be seen that for Ms > 2, x is a decreasing function of Ms and 8w, while
for imperfect argon the dependence on M5 becomes strong at Ms � 7 when iori.za-
tion starts. The perfect-gas lines (Fig. 38, dashed. lines) level out arid x
becomes indep endent of Ms or x = x( Ow)~ 

This type of behaviour is similar
to the results that were obtained using the method of Law and Glass (Ref.  51)
as shown in Fig. 37.

13.3 Domains of Shock-Wave Diffractions in a Diatonic Gas - Nitrogen

Figures 23 (with x subtracted) and. 25 were superimposed to obtain
Fig. 39. Only the boundary line corresponding to P0 = 15 torr is reproduced.
Out of a maximum of eight possible shock-wave diffractions only seven are
obtained. in the range 1 < M~ < 10. The unobtainable diffraction is an RB
with an attached shock wave at the wedge corner . Note that if the lines
81 + 82m = 0 and the attached/detached lines are extrapolated. beyond M5 = 10
they might intersect , and hence an BR with an attached shock wave could be
obtained.. The seven different shock wave diffractions in the range 1 <N5 < 10
appear in Fig. 39 and. are listed in Table 1. They consist of an RB with a
detached. shock wave (region 1), SW having a detached. or attached shock wave
(regions 2 and 3, ~espective1y); OW with deflection through a detached or
attached shock wave (regions 13 and. 5, respectively); and finally DW with a
d.etached or an attached shock wave ( regions 6 and. 7 ,  respectively).

13.13 Domains of Shock-Wave Diffractions in a Monatomic Gas - Argon

Figures 213 (with x subtracted) arid 26 were superimpose-i to obtain
Fig. 130. Only the lines corresponding to Po 15 torr are reproduced.. In
the range 1 <Ms < 10 this time only six diffractions out of a maximum of eight
are possible. The two unobtainable diffractions are an RB and a DW with an
attached shock wave at the corner. However, if the lines 81 + 82m = 0 , ~~
1.00 and the attached/detached line (o w  = 

~~2 ~) are extrapolated beyond. M5 10,
the two former lines night intersect the latter one, resulting in the missing
two diffractions. The six different sho-.k-wave diffractions in the range
1 < Ms < 10 are RB with a detached shock wave (region 1); SW with a detached
or an attached shock wave (regIons 2 and 3, respectively) ; CMR with a
detached. or an attached shock wave ( regions 13 and 5, respectively); and
DW with a detached shock wave (region 6) The six different diffractions
are shown in ~‘ig . 140 and. listed. in Table 2.
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5. OBLIQUE SHOCK-WAVE REFLEC’~I0N IN STEADY FLOWS

Prior to the present study it was accepted among most researchers
that the shock wave reflection phenomenon in the nonstationary case is equi-
valent to the reflection process in steady flows, once a. frame of reference
is attached to the triple point in SW or the reflection point in RB ( Fig . 14i) .
However , since several d.lfferences have already been pointed out throughout
this report it is of interest to suTnmR~rIze the phenomenon in steady flow as
well as to compare the steady and nonstationary shock-wave reflections . Note
that one cannot use the term “diffraction” in steady flows as only reflection
takes place .

When a steady supersoni c flow encounters a wedge with an angle ~i(Fig. 132) it will be deflected by an oblique shock wave I through an angle e,_
to become parallel to the deflecting surface . The angle of incidence ~~ as
well as all the thermodynamic and dynamic properties of state (1) behind the
oblique shock wave I are defined by P0, T0, M0 and 01. If the flow behind the
oblique shock wave I is supersonic (Ml > 1) a reflected shock wave occurs to
turn it away from and make it parallel to the wall . It is an experimental
fact that the weak solution is the one that occurs. Consequently N1 will be
greater than unity.

If the value of 81 ( see Fig . 132) ir smaller than the maximum deflec-
tion angle 82m of the flow in state (i) an RB occurs (Fig. 143a ) ,  while for
02 > 82m an RB is not possible and. an SW occurs (Fig. 133b). It is not assumed
that this is the transition criterion from RB to SW. Note that an RB or an
SW can also be obtained other than from a. rigid. wall by the intersection of
two oblique shock waves (generated by two wedges in a steady supersonic flow)
as shown in Figs . 1413a and 1313b . Actual interferograms of RB and SW in a
supersonic wind. tunnel are shown in Figs . 135a and. 135b (standard interferogram)
and Figs . 146a and 136b ( infinite fringe interferogram) . (We are indebted to
Dr. H. G. Hornung of the Australian National University for supplyi ng us with
these interferograms ; see Ref . 77.)

It was noted in Section 2 .2 .3 that the termination criterion for RB
in steady flows is different from a nonstationary flow (Ref s. 65 and 714).
While in nonstationary flows , the “detachment” criterion or the “sonic”
criterion (Eqs . 2.l~4 and 2.16 , respectively) is used (Fig . 2a , Riv) . In steady
flow, Hornung and Kychakoff (Ref . 65) verified Henderson and Lozzi ’ s (Ref . 60)
“mechanical-equilibrium” criterion , described by Eq. 2.15 (Fig . 2a , R~ i) .  It
should be noted., however , that Hornung and. Kychakoff ’ s general criterion for
the transition RB .-~ SW includes both specific criteria of steady and non-
stationary flows .

5.1 Types of Reflection Obtainable -

It is an experimental fact that only SW and RB have been obtained
in steady-flow wind-tunnel experiments. It is suggested that the reason lies
in the experimental set-up used to obtain oblique shock-wave reflections in
steady-flow experiments. Recall that the reason for the termination of SW
and formation of CW and later DMR in the nonstationary case is that the flow
behind the reflected shock wave R becomes supersonic wrt the triple point T
(N2 > 1) while it is directed towards the wedge surface ( see discussion in
Section 2.13). In the steady case, the flow in state (2) is always interrupted
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by either an expakision wave or a reflected shock wave (Figs . 147a and 14Th,
respectively) , which arises from the wedge used to generate the incident
oblique shock wave I. Thus the flow in state (2) behind the reflected
shock wave is prevented from reaching the wedge surface again . Therefore
the need to turn bIa± o flow away from the wall is eliminated . Consecuently ,
in steady flows unlike nonstatiopary flows i t  is possible to have SW with
supersonic flow behind the reflected wave.

5.2 Steady Oblique Shock Wave Reflection in (M0, ~0)-Plane

In steady flows the parameters Ms and. ~~ 
which were used for

nonstationary flows cease to be significant. Instead the flow Mach nuther
in state (0), M0 and. the flow incidence angle ~~ to the oblique shock wave I
are used. Consequently the reflection phenomenon is described. in the
(No, ~0)-plane .

5.2.1 Steady Flow Regions and. Transition Boundaries in a Diatomic Gas - Nitrogen

The domains of different types of oblique shock wave reflection in
nitrogen are shown in Fig . 148. The solid boundary lines account for real-gas
effects , while the dashed lines are for a perfect d.iatoxnic gas ( y  = 1.13) .

The (N0, ~0)-plane is diflded into 3 domains of RB, SW-. Rnd i~IR . The signi-
ficance of real-gas effects on shifting the boundary lines can be clearly
seen . The perfect-gas theory can be used only in the narrow range 1 < N 0 < 2.22 .
At Mo = 2.22 the imperfect-gas lines start to diverge from the perfect-gas line
due to vibrational excitation . At higher Mach numbers (N0 > 8.6) the imperfect-
gas line splits into a multiplicity of lines for different initial pressures at
constant temperature due to dissociation. At even higher Mach numbers electronic-
excitation and ionization would play a similar role . When }4~ approaches unity
the line 81 - 82 = 83 0 approaches the line M1 = 1.00. These two lines are
coincident at Mo = 1 and ~o = 90’.

5.2.2 Steady Flow Regions and Transition Boundaries iri a Monatomic Gas - Argon

The domains of SW, BR and. 1~IR for argon are shown in Fig. 139. The
solid lines are again for imperfect argon while the dashed lines are for a perfect
monatomic gas (y = 5/3).

Unlike the case of a diatomic gas where the perfect-gas theory was
adequate only for very small values of M0 (Mo <2.22, Fig. 138), here (Fig. 149)
it can be used over a much wider range, 1.00 <Mo <e.95. At N0 = 8.95 the
imperfect-gas boundary line splits with initial pressure (at constant tempera-
ture) due to electronic excitation and ionization. Consequently one can expect
an SW when M0 = i6, ~~ 

= 30° and Po 
~ 

10 torr , while an RB will be obtained if
Po < 1 torr .

5.3 Comparison Between Steady and Nonstat ior~ ry Shock Wave Reflection

It has already been mentioned that in spite of the similarity between
shock-wave reflection in steady and. nonstationary flows , several differences
exist between them. Therefore it is worthwhile to simm~ .rize these differences.
The first arid most important difference lies in the fact that the shock-wave-
reflection process in the nonstationary case always interacts with the flow
deflection process over the corner , while in steady flows only reflection occurs .
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C3nsequently , unlike that in steady flow , an NB domain exists in the (M0, ~)~)-
plane (Figs . 148 and. 49) ; in the nonstationa.ry case , there is no actual NR
domain (Figs. 39 and 140) in the (M5, ~~) -plane . Recall that in the nonstationary
case , a reflection occurs even when the flow behind the incident shock wave I —

becca~~s subsonic wrt point P (Fig. 13a) due to the interaction with the flow—
deflection process (Fig . 13b). In the steady flow case only one reason exists
for shock-wave reflection, i.e., a need to turn the supersonic flow moving
towards a solid surface (Fig . 142) . In the nonstationary case there are two
reasons . The first is analogous to the steady case arid holds for Mi_ > 1
(Fig. 13a), while the other applies to N1 < 1 (Fig. 14b). Note that in steady
flows Mj < 1 yields no reflection (NB). A more detailed discussion of these
two reasons is given in Section 2.1.

In Section 2.2.3 it was noted. that the termination criteria of BR
are different for steady and nonstationary flows. In nonstationary flows either
the “detachment” criterion (Eq . 2.14) established by Neumann (Ref s. 2 , 13) or the
“sonic” criterion (Eq. 2.16) established by Hornung and Kychakoff (Ref . 65) holds ,
while in steady flow the “mechanical-equilibrium” criterion (Eq. 2.15) , established
by Henderson and Lozzi (Ref . 60) and Hornung and Kychakoff (Ref. 65) , applies.

Once RB is terminated three different types of reflection can occur
in nonstationary flows, i.e., SW, CNR and DI4R . In steady flows, however, CNR
and DW cannot occur due to the geometrical limitations used to obtain the
reflection ( see discussion in Section 5.1) and hence only an SW is possible.
It should be noted, however , that while in steady flow one can have an SW
with supersonic flow behind the reflected shock wave, in nonstationary flows
SW is terminated when the flow behind the reflected wave becomes supersonic.

The interaction between the shock-wave-reflection process and the
flow-deflection process in nonstationary flow results in a three-shock con-
fluence where the reflected wave R , Mach stem M and slipstream S are usually
curved (not in the vicinity of the triple point where they are all straight ,
see Ref. 53) . In steady flow, these shock waves and slipstream are usually
straight, and hence the flow regions bounded by them are much more uniform
than those in the nonstationary case . One should note that in steady flow
the slipstream never curls back, a typical property of nonstationary reflec-
tions.

Due to the fact that the incident shock wave in nonstationary reflec-
tions always moves into a quiescent flow, the reflection point (Fig. 13a) is
always independent of’ the boundary-layer growing behind it. However, in steady
flow the boundary-layer effects depend on the geometrical set-up used to obtain
the reflection. A severe boundary-layer interaction is eliminated if the inter-
section of shock waves is used to obtain the reflection (Figs. 144a and 414b).

The triple-point trajectory angle x has no physical meaning in steady
flows, where the configuration is fixed wrt time , i.e., does not grow linearly
with time. However, in steady flow the length of the Mach stem can be regarded.
as a similarity parameter. So far a theory for predicting the length of the
Mach stem has not been published. The equations of motion (Eqs . 2.17 to
2.30) are all satisfied if one moves the triple point to any point along the
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incident shock wave (Fig . 50) and. draws the Lorresponding reflected. shock
wave R*, Mach stem M* and slipstre~~n 3*. However, repeated experiments for
the same initial conditions and geometrical configurations provide id.entical
shock-wave configurations. This suggests that the factor s governing the
reflection process in steady flow ~-~ e related to the waves emanating from the
wedge (Figs . 137a and 137b) . It should be noted here that Molder (Ref. 76)
developed a theory for the reflection of curved. shock waves in steady flows,
using the assumption of constant curvature , by which the length of the Mach
stem can be determined analytically. However , his theory fails to predict the
length of the Mach stem in the case of the reflection of straight shock waves .
(Owing to the lack of experimental data on the reflection of curved. shock waves ,
Molder’ s analysis remains unsubstantiated.)

The incident shock wave was observed to be accelerating somewhat when
it passed over the compression model in the test section. A constant-velocity
shock wave was measured. when the model was removed. The reason for this accelera-
tion is not known. Although this acceleration is usually very small it might have
an influence on the reflection process. Consequently Eqs . 2.1 to 2.9 for an RB
and Eqs . 2.17 to 2.30 for the triple point T describe the reflection phenomenon
in steady flows better than they do in nonstationary flows, where the flow Mach
number N0 ahead of the incident shock wave [state (0) ) changes slightly as the
incident shock wave accelerates , i.e., M5 increases.

6. ~~~~~~~~~ TECH.NI~UES AND INSTRUW~~ATI0N

The U~IAS 10 cm x 18 cm Hypervelocity Shock Tube (Ref. 32) was used.
to generate the incident shock waves. An updated and. detailed description of
the entire facility, its performance maintenance and operational techniques is
reported in Ref . 71. Therefore in the following only a brief discussion is given .

The cold runs were used. to generate the shock waves in the range 2 <

Ms < 8 of the present study . The initial conditions , i e . ,  the pressure ratio
across the n~jl ar diaphr a~ n and the driver gas combinations used to ob tain
different incident shock waves into ni trogen and. argon are given in Tables 3
and. 13, respectively The shock wave Mach numbers, N5, given in Tables 3 and
4 represent the average values obtained throughout the present study. Conse-
quently, the initial conditions listed. in Tables 3 and. 4 will pr~~uce, in
general, shock waves in the r ange M5 ± 0.1 of the predicted value . The initial
pressures P0 in the range 5.00 < P0 < 65.00 torr were monitored with two Wallace
and Tiernan type FA i6o (0-50 torr and. 0-200 toir) dial gauges. A more accurate
measurement of P0 was made using an oil manometer (0.2- 130 torr) .

The nonstationary process was recorded. using a 23-em dia field, of
view Nach-Zehnder interferometer (Ref s 21, 71) The light source was a
giant-pulse ruby laser (Ref 7~ ) Simul taneous dual-frequency interferograins
were taken at 6943X and 3147l.51~, respectively. Kodak , Royal X Pan ( 1250 ASA) ,
10 x 13 cm (4 x 5 inch) plate film was used to record the interferograms .

A schematic instrumentation diagram of the equipment used throughout
the present study is shown in Fig . 51. When the shock-wave arrives at station
D , time-counters 1, 2 , 3, 4 and 5 are triggered simul taneously . (Note that
these 5 counters are connected to a ccsxnnon external 1-megacycle oscillator,
and hence have a uniform time base of 1-microsecond resolution.) These 5
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counters then stopped in succession as the shock wave passed subsequent
detectors at stations F, G, H, I and J .  An additional counter (No. 7) was
used between stations I and J to indicate the time taken for the shock wave
to travel past the test section . Since the shock wave velocity changes

- somewhat due to the convergence of the cross section caused by the model
(Refs . 39 and 136) ,  the measurement of counter No. 7 was usea only as a monitor
of the shock location.

The control of the laser light source operation is also included in
Fig . 51. The laser flashlainp capacitor bank was usually triggered by the shock
arrival at station F , suitably delayed. in a Tetronix type 555 oscilloscope to
get 900 i.Lsec of energy pumping by the time the Pockels-cell shutter opened.
The Pockels cell Q-switch was always triggered from station I, delayed correctly
in a pulser delay unit to take the interferograms at a desired time (or location
of the shock wave wrt station I) .

To monitor the actual flashlazsp pumping time in each experiment ,
synchronization pulses from both the flashlamp capacitor bank and. the Pockels-
cell pulser unit were used to start and stop , respectively, a tJTIAS microsecond
counter (Fig . 51, Counter No. 6).

As an additional check on shock-tube performance in each experiment,
a Kistler type 601-B, piezo-electric pressure transducer was used. to monitor
the pressure variation with time behind the incident shock wave . The transducer
output was taken d.trect’ly to a charge amplifier (Kistler , Model 504) with a
final signal displacement on the designated oscilloscope (Fig. 51) .

6.1 Accuracy of Measurements

A detailed description of the absolute errors associated with the
various measurements involved. in the operation of the shock tube facility
is given in Ref. 71. Consequently, only a brief sumaary follows.

6.1.1 Incident Shock Wave Mach Number - M

The maximum possible relative error in calculating the incident
shock wave Mach number was (Ref . 71) :

E(M )
N5 

= (1.15 N
3 

+ 10.18) x l0’
~ for nitrogen (6.1)

E(M ) 
3____ = (1.05 x N5 + 10.18) x 10 for argon (6.2)

Consequently, in the range of incident shock wave Mach numbers used in the
present study, 2 < M5 < 8 , E(M8) = 0.02 for both nitrogen and argon at the
lower end (N5 = 2~ while for M5 = 8, E(M5) = 0.16 and 0.15 for nitrogen and
argon , respectively . Equations 6.1 and 6.2 are shown in Fig. 52a. It can be
seen that the relative error E(M5)/Ms increases linearly as Ms increases .
Consequently the absolute error E(M5) is proportional to N52 .
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6.1.2 Initial Pressure P0 and Temperature T0

Initial pressures in the range 5 < P0 <130 were measured with an oil
manometer. The pressure P0 is calculated from (Ref . 71) :

~~ 
~l 

H(xrun)
01 6

0 13.5951

where H is the oil-height difference in n~~ as measured in the manometer, and
Poil is the density of the oil and it is given by:

~0ii 
= 1.0690 + 9.5 x l0~~ (25-T) (6. 14)

T, the ;ôtl - te~~ rature, was assumed. to be equal to the laboratory temperature
measured near the manometer (T = TL). The absolute error associated with the
initial pressures is then (Ref. 71):

E(P0) 
= [1.13 x 10~~ H() + 7.86 x i0”2) torr (6.5)

Consequently, the maximi~~ possible errors associated with lowest (5 torr) and
highest (37 torr) pressures that were measured. with the oil mancmeter are 0.08
torr and 0.09 torr , respectively .

Pressures in the range Po 2 130 torr were m~aaured with a Wallace
and Tiernan type FA 160 (0-200 torr) within an accuracy of ± 0.2 torr and
hence the maximum possible error was E(P0) = 0.14 torr . A plot of the absolute
error involved in the pressure measurements in the present study 5 < Po <65
is given in Fig. 52b.

The initial temperature To was measured. to an accuracy of ± 0.1° wi th
a standard mercury bulb thermometer inserted in a 5 cm deep , 6 ma d.ia oil-filled
port in the upper wall of the shock tube . Consequently , an error E~~ ) = 0.20

was associated with all temperature readings .

7. ~~CPERINENIAL R~~UILI~S AND DISCUSSI01’~S

The above discussed facility was used to obtain and record non-
stationary oblique shock-wave diffraction in nitrogen and. argon . Fifty- eight
successful experiments were made in nitrogen , with 9 different compression
corners (wedges) having e~, = 2’, 5 ,  10’, 20’, 26.56’, 30’, leO’, 50 ’ and 60’.
In the case of argon 138 successful experiments were performed with 7 different
wedge angles,ew = 2’, 10’, 20’, 30’, 1e0 , 50’ and 60’. All angles had an
accuracy of ± 0.016’?’.

Unfortunately, due to mechanical limitations wedge angles lower than
2 could not be machined. Wedge angles greater than 60’ were not of interest
as they would have resulted in BR, thereby not adding any important data. The
incident shock wave Mach numbers N5, wedge angle e~ 

and initial pressures and
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and temperatures (p0 and To) associated with each experiment are listed. in
Table 5 for nitrogen and Table 6 for argon . These tables also includ.e the
experimental values of the primary and secondary triple point trajectory
angles x and x’ as well as the type of reflection obtained with the initial
conditions. Note that 

~~~
‘ is listed also for C!v~~; it is ~~itted , however,

for CMR where the location of the kink is not sufficiently clear. Since
the 1)cation of the kink in a CNR is not as well defined as the location of
the second triple point in a DIvIR, the accuracy of measuring x’ in a CMR is
~m~11er than in a DNR. Consequently, the absolute errors are E(Xt) = 10 for
CMR and. E(~~’) 

= 0.5 for DHR . (The errors associated in measuring M5, P0
and. To are discussed in Chapter 6.)

Owing to the size of the present report , most of the interferograms
have been omitted. However , as they are important as a data bank that m ight
be helpful in the future to various researchers, all the actual interfero-

• grams of the nonstationary oblique shock wave reflections that were obtained
throughout the present study ( see Tables 5 and 6 for details) are given in
Ref . 72. In all, 106 experiments were conducted.

7.1 Verification of Nonstationary Oblique Shock-Wave Reflection in (M ,
Plane

In the present analysis the two different phenomena of~ahock-wavereflection by the wedge surface and the induced-flow deflection over the wedge
corner were treated independently (in Chapters 2 and 3, respectively) . In
this manner Figs. 23 (nitrogen) and. 224 (argon) were produced. for reflection
and Figs. 25 (nitrogen) and 26 (argon) for flow deflection. A superposition
of these figures (Chapter 4) produced the overall phenomena of oblique shock-
wave diffractions shown in Figs . 39 and LeO for nitrogen and argon, respectively.
Recall that the appropriate value of x was subtracted from Figs. 23 and 214 in
order to superimpose them wi th Figs . 25 and. 26.

In the following, the present analysis of nonstationary reflection of
obli que shock waves is compared with experiments. Figures 53 and. ~le are
reproductions of Figs . 23 and 24 with Po = 15 torr only, for clarity. Note
that although most of the present experiments were made with P0 15 torr ,
those corresponding to low Mach numbers (N~ ~ 2 in nitrogen and argon ) and
high Mach numbers (Ms � 6.79 .in nitrogen and M5 � 7.53 in argon) were obtained
with slightly different initial pressures (see Tables 5 and 6 for details) .
However , Figs. 23 and. 2~4 indicate that the initial, pressure becomes signi-
ficant for the boundary lines Ml = 1.00 , I~~ = 1.00 and 142’ = 1.00 (Fig . 23)
at M5 = 7.56, 7.51 and 7.47, respectively, and for the boundary lines Mi = 1.00,
142 = 1.00 and. 142’ = 1.00 (Fig . 214) at M5 = 7.72 , 7.65 and 7.32 , respectively.
These high values of Ms were about the highest used throughout the present
study. For the boundary line e~ + 02m = 0 of Figs . 23 and 214 the initial
pressure becomes significant at Ms = ~.05 and 5.56 , respectively. However,
in the neighbourhood of these boundary lines the experiments did not go up
to M3 — 8, since in similar experiments that were conducted in the past
with the sane facility the high-~~~.1ity optical windows were burned (Ref .  133) .

7.1.1 Diatomic Gas

The experimental data of Smith (Ref . 6) for M5 = 1.25, 1.51, 2.10 and
2.140, and White (Ref. 17) in air , Law and Glass (Ref . 51) in oxygen, and our
data in nitrogen are all added. to Fig. 53 (a reproduction of Fig. 23 for
P0 = 15 torr) in order to check the present analysis for nonstationary
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oblique shock-wave reflection in diatomic gases. tNote that the term reflec-
tion is used. here as the results are plotted. in the pseudo-steady plane
(Me , a~,).] Two points from Smith ’ s experimental data that are reported
to be BR lie slightly below their analytical terminating boundary line.
We believe that this slight di sagreement is probab ),y due to Smith’ s use of
air ( the lines in Fig. 53 are for nitrogen) . The presence of 20% ~ojgen inair would cause the boundary line to be lower than that of nitrogen , since
the o~ rgen becomes vibrationally excited. at a lower temperature, and. hence
the line would. start shifting downwards at a lower Mach number.

Shock-wave reflection configurations reported by Smith (Ref . 6)
to be SNR in the range 2.10 < N 5  < 2. 142 appear to lie in the region that
corresponds to CNR (Fig. 53). However , a careful check of Smith’s report
reveals that he observed. that , “for strong shocks (hi s strongest shock was
Ms = 2.42) a reversal of curvature (in the reflected shock wave) d.evelops” ,
and furthermore “the portion of the reflected shock near the triple point
that appears to be straight” . This we believe corresponds to CMR . It is
clear that although he had. noticed. a CW-configuration, he r eferred to
it as an SNR rather than propose a new type of reflection, since these two
configurations, except for the kink in R , are quite similar in appearance .
When White (Ref . 17) discovered. DMR in 1951, the importance of CNR was
recognized. as a different type of reflection. However, in White ’s report
CI4R is still considered as SNR . Note that one experimental point of White
(Ref . 17), N5 = 2.3, e~ = 39.2’ in the region where Smith (Ref. 6) reported.
SNR, resulted in a CI4R; this verifies the previous remark that those experi-
ments by Smith are CMR and not SNR . E~ccellent agreement can be seen with
all the other boundary lines since all the experimental point s lie in their
predicted regions .

7.1.2 Monatomic Gas

The present experimental results (Table 6) in argon as well as
some data from Law and. Glass (Ref. 51) in argon and. helium are all shown in
Fig . 5)4 (a reproduction of Fig . 213, for P0 = 15 torr) .

One experiment reported. by Law and. Glass as CMR lies inside the
DI4R regime (Ms = 7.66, e~, 4 5 ° ) .  However this experimental point is sur-
rounded by DNR points that were obtained during the present study . It might
be that the initial directions of the fringes chosen by Law and Glass (differ-
ent from ours) was such that ~the R1- shock wave (Fig . 19) of a DW could not
be seen c1eat~ly. Note that Bazhenova et al (Ref . 62) also reported DI~ in
argon , in the region where Law and Glass did not notice it.

Out of a.1]. our experimental points , only one (Ms = 13.44, e~, = 145.5’)that corresponds to a DZVIR lies outside its predicted. region, in the CIVIR
domain. This we believe is due to the use of Eq. 2 .247 in calculating the
CNR/DMR boundary line . Recall that Eq. 2.47 was found by Law and Glass
(Refs . 148 and 51) and Bazhenov~, et al (Ref . 246) to be in good. agreement with
experiments only in the range e~ < Leo’ while for the range e~ > 130’ the
agreement becomes progressively worse. Not e that aside from this slight
disagreement all the other experimental points lie inside their predicted
regions .

7.2 Triple Point Trajectory Angle - x C~~~ arison Wi th Experiments

In order to superimpose the shock-reflection process (Figs. ‘23
for nitrogen and 214 for argon) with the flow-deflection process (Figs. 25
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and 26 for nitrogen and argon , respectively) the value of x was subtracted
from the correspondi.ng boundary lines of Figs. 23 and 214. Two different
methods for the prediction of x were discussed. in Section 2.3.1.1. The
first , due to Law and Glass (Ref . 51) , was found by them to be in good
agreement with experiments (in oxygen) only in the range 25’ < ow < 145° .

• The other , developed here , is for very small wedge angles,
o~ < 5°. These two methods were applied. to nitrogen and argon (Sections
24 .i and 24 .2 , respectively) to obtain Figs. 31 and 32 for ni trogen , and
Figs . 37 and 38 for argon . In the following, these two methods are checked
against the experimental results in nitrogen and oxygen.

7.2.1 Diatonic Gas

The present dat a (Tab le 5) were added to Fig . 55 (a reproduction
of Fig . 31) , in order to test the present analytical version of the graphical
method by Law and Glass (Ref. 51) for predicting x in nitrogen . It is seen
that the agreement with experiments for wedge angles in the range 5 < e~ ~ ~

40’

is reasonably good. Most of the experimental points in this range lie within
± 0.5’ from their predicted values. However, for ow < ~ 

the agreement becomes
• progressively worse as $~. decreases. Note that while Law and Glass (Ref. si) ,

who developed. this method of predicting x’ found it to be good only in the
range 25° < e~ < 245° (in oxygen) , it is seen that good agreement actually
exi sts over a much wider range ~ < o~ < 145’ . This is probably due to the
fact that they solved Eqs . 2.17 to 2.31 graphically, whereas the present
solution is analytical. During the present study their graphical solution
was checked for nitrogen . It was found. to exhibit the same characteristics
as their graphical solu tion for oxygen. Note that for ow < 240’ the actual
values of x are greater than those predicted. In this range all the data
points fall between the predicted perfect and imperfect gas models.

The experimental data for 2° and 5° wedge angles (Table 5) are
shown in Fig. 56 (a reproduction of Fig. 32) in order to check the present
method for predicting x for low wedge angles. It can be seen that for a 5°
wedge the present analytical version of the graphical method of Law and Glass
(Ref . 51) is actually in better agreement with experiment~~ results than the
present method for small wedge angles. For ow <40 the present method is in
good agreement with experiments.

It should be noted that it is very difficult to predict the value
of x’ using the analytical version of the method of Law and Glass for very
smna.11 wedge angles (ow < 5°) owing to severe convergence problems as ow
becomes small . The graphical solution is possible , however, accuracy is very
low and the error at even greater wedge angles (5’ < ow < 20’) becomes signi-
ficant (Ref . 51). Consequently this is the only existing method of predicting
x at low wedge angles (ow < ~~~~~~~~~~

7.2.2 Monatomic Gas

The data from Table 6 for ow = 10’, 20’, 30°, leo’ and 50’ is shown
in Fig. 57 (a reproduction of Fig . 37) in order to test the present analytical
method (based on Law and Glass, Ref . 51) for predicting x against experiments
for argon . Very good agreement can be seen with the wedge angles 20’, 30’ and
400 while for 10° and 50’ the actual value of x is smaller than the predicted
one by more than 1° ( the error bar) . For these two wedge angles the agreement
is fairly good for small values of M5 (Ms < 3 for ow = 500 and M3 < 5 for

= 10°) and becomes progressively worse as N5 increases.
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• The data points for ow 2’ (Table 6) are shown in Fig. ~8 (a reproduc-
tion of Fig. 38 for ow = 2’). The agreement is fairly good. for low and high
Mach numbers while in the range 3 <M~ < 6 it is not so good. Here as well ,
owing to convergence problems, it was not possible to get a prediction of x
using our analytical version of the method of Law and. Glass (Ref.  51) for
ow -

7.3 Verification of Nonstationary Oblique Shock Wave Reflections in (N
5, e~)-Plane

Figures 53 (nitrogen) and. 514 (argon) correspond to nonstationary
oblique shock wave reflection in the (M5, e~)-plane. However, while the
exact value of the effective wedge angle ~~ can be measured only after an
actual experiment is recorded, the actual wedge angle O~ is a given parameter .
Consequently, it is of interest to obtain the reflection phenomena in the
(M5, Sw) plane rather than the (Ne, e~ )-plane . This is done by subtracting
the appropriate value of x (Figs. 31 and. 32 for nitrogen, and Figs. 37 and 38
for ~a’gon) from the vertical axis of Figs. 53 and 524 (nitrogen and. argon,
respectively) .

The line 01 + 0e1~ 
(Figs . 53 and 514) represents the boundary of the

• BR process. Consequently, the actual value of x above (and on) this line is
zero . Therefore it does not change throughout the transformation . Recall
that the present method for predicting x for very small wedge angles (Section
2.3.1.1) is based on the experimental fact that in the nonstationary case ,
the incident shock wave always reflects. Following this method (Eq . 2.33)
one can inmiediately see that the transformation 0~i -s Ow eliminate the lines
Ml = 1.00 of Figs . 53 and. s24 . In other words , on the lines Ml = 1.00 (Figs.
5~ and 513) , &4 = x and since e~ = e~ + x by definition the transformation
ow ~~ yields that the lines M1 1.00 coincide with the lines Ow = 0. Con-
sequen tly only the lines M2 = 1.00 and M~ = 1.00 of Figs . 53 and 54 need be
transformed..

7.3.1 Diatomic Gas

The data from Smith (Ret .  6), White (Ref . 17) and. Bazhenova et al
(Ref . 55) in air, Law and. Glass (Ref. 51) in oxygen, Bazhenova et al (Ref. 55)
and the present in nitrogen are all shown in a combined. plot on Fig. 59 ( ob-
tained. from Fig . 53 by subtracting x) in order to verify the present analysis
of nonstationary oblique shock-wave reflection in the (Ms~ Ow) -plan e for
d.iatomic gases.

Two experiments (present one and one ti~~i Law and Glass) with ow = Leo’
and. Ms = 2.00 and 2.56, respectively, in the region where Smith (Ref . 6) re-
ported SNR results in CNR, and verifies our previous remarks that those
experiments by Smith are CMR and not SMR . Many more data points from White
(Ref . 17) could have been used. However , since they all fall in their
predicted regions, they were omi tted. for clarity. It can be concluded from
this figure that our analysis of the nonstationary oblique shock-wave reflec-
tion in the (Ms~ ew)-plazie for a diatomic gas is substantiated.

7.3.2 Monatomic Gas

The data of Law and Glass (Ref . Si) in helium, B azhenova et al
(Ref . 55) , Law and Glass (Ref . 51) and the present experiments in argon
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appear in Fig . 60 (obtained from Fig. 54 by subtracting x) in order to check the
present analysis for nonstationary oblique shock-wave reflection in a monatomic
gas on the (M5, 8w)-plane. Very good agreement was obtained with the calculated
regions and their boundary lines. All the experimental point s lying outside
their predicted regions are discussed in Section 7.1.2. It can be concluded.
that the present analysis for nonstationa.ry reflection of oblique shock-waves
in a monatomic gas is subStantiated.

7.4 Verification of Nonstationary Oblique Shock-Wave Diffraction in (M5, e~
) _Piane

Figures 61 and 62 are reproductions of Figs. 39 and leo for ni trogen and
argon respectively. Unfortunately, not all the data shown in Figs . 53, 514, 59
and 6o could be used since information concerning the flow deflection process
is usually not reported [e.g., Bazhenova at al (Ref. 55) , where in al]. the

• recorded pictures the wedge corner is not in the field of viewl. Consequently,
the present data in nitrogen and argon as well as a few data points from different
sources are shown in Figs. 61 and 62, that test the present analysis of nonstationary
oblique shock-wave diffraction (shock reflection and. flow deflection) in the (I4~, Ow)

• plane .

7.14.1 Diatoni c Gas

Our experimental data point s from Table 5 in nitrogen and White ’ s (Ref .
17) in air are shown in Fig. 61 (a reproduction of Fig. 39). It is seen that
all the data points fall inside their predicted region. Therefore, our analysis
of the shock-wave diffraction in nonstationary diatonic gases is substantiated,
and the seven different types of diffractions listed in Table 1 are all valid.

It is worthwhile to refer the reader to White ’ s report (Ref.  17) where
excellent examples of shock-wave diffractions with degenerated reflected shock
waves are given (Figs. 314 , 38 and 42 of Ref. 17). Note that White was able to
obtain very weak incident shock waves (M5 = 1.010 , 1.0247 and 1.022 for these
figures) for which the reflected shock wave vani shes as it degenerates into a
Mach wave . For further details see Section 8.

7.24.2 Monatoird.c Gas

Our data from Table 6 in argon are all shown in Fig . 62 (a reproduction
of Fig . 140 ) .  All experimental points ( except the one at Ms = ~~~~~~~~ Ow =

which have already been discussed) lie inside these predicted regions. Conse-
quently, one can conclude that the present analysis for nonstationary oblique
shock-wave diffraction in a monatonic gas is substantiated. Unfortunately, out
of the six different diffractions predicted by the present analysis (Table 2)
only five were observed experimentally . The remainder, a CNR with an attached. shock
wave at the wedge corner (region 5, Figs. 240 and. 62), was not observed since its
domain starts at Ms = 9.14 and lies beyond the practi cal possibilities of incident
shock waves (N.3 ~ 8) without damaging the interferometri c quali ty windows of the
test section. However, in light of Fig . 62 and the verification of 5 regions out
of the 6 listed in Table 2, one can conclude that the present analysis for the
diffraction of oblique shock waves in nonstationary monatoinic flows is substantiated
and that six different types of shook-wave diffraction exist in the range 1 < M 5 <
10.
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7.5 ~~~~~~ Dis~ucsions

The present e:~periment—~ and analyses have verified the region s and
boundaries of ~ons tationary reflection of oblique shook waves i: the (M5, 0~j)and. (M5 . 0w)-pla~~~ a: well a: tho•~e of r.or -t-~ ionary diffra-~tion of oblique
shock wave s in th~c (M b ,  ~~)-p 1an e ~or diatoni~ d.nd ~o :a t omi~: g ases .

~t is worthwhile to refer  again to Fig . 3 which shows all the ~nforma-
tion :c-~ -~e~ :ing the. e ioc~~ n-s ~n i  tr it~ o:~ bouna.aries of nonstationary oblique
shock-wave reflection in the (M5, ~~) -p1ane that was known prior to the present
research . A d~tai1ed d.escription of Fig. 3 is give c in Se~ tiort 1, and hence
only a brief comparison follows. While Fig 59 covers a wide range of hedge
angles 0 < 

~~~~ 
< 90° and shock Mach numbers 1 < M s  < 10 , Fig 3 is limited. to

200 < 0~ < 60
0 (the region 60° < Ow < 900 corresponding to RB was probably not

drawn since it does not contain any significant information) cnd 1 < M5 < 9.
However , although the upper limit in Fig . 3 is M5 = 9, only line 1 extends all
over the entire range. Lines 2, 3 , 14 and 5 terminate at M5 = 8.00, 14 .75, 3.50 ,
and. 2.75, respectively. In Fig . 59 all lines extend over the cntire range , up
to Ms 10. However, although Fig 59 was limited to M6 = 10 (clue to the fact
that it was decided to make experiments only up to Ms = 8, in or der not to
damage the ht~h quality test section windows) the present analyses ~~ply forN5 > 10 as well . Unlike the case of Fig. 3 the analytically-obtained. boundary
lines are for a perfect gas while those accounting for real-gas effects are all
experimental, all the boundary lines in Fig . 59 were obtained analytically,
ei ther by solving Eqs . 2.1 to 2.9 for an RB or Eqs . 2.17 to 2.30 for the triple
point with and without real-gas effects . It is probably the first time that an
analytical so1uti~~ was obtained for Eqs . ~ .l7 to 2.30 with real-gas effects.

The contributions of the present study to knowledge concerning the
reflection of oblique shock waves in the (N5, Ow) or (M 5, ~o) -p 1anes are
stnnmarized in Tables 7 and 8. While RE and SW were discovered one hundred
years ago (1878) by Ernst Mach , it is only about 35 years since CW was first
noticed by Smith (19135) and DW discovered by White (1951) . The formation
criterion of RB in both steady and. nonstat ionary flows was est ablished by
Neumann (19 43) , as well as its termination criterion in nonstati onary flows
(19143) More recently Henderson ancl Lozzi (1975) suggested a new criterion for
the termination of RB that was found (Ref . 6~) to be correct only in s teady
flows . However , Hornung and Kychakoff (1975) established a more general
criterion for the termination of RE resulting in the sonic- ~riterion (slightly
below Neumann ’ s criterion) for nonstationary flows, and Henderson and Lozzi ’ s
criterion for steady flows . Henderson and. Lozzi (1975) were the first to
suggest that the terninat~ on of SW is followed. by a CMR , and later when 1v~
increases a DW is formed. Howev~r , th~ e:-:act criterion for the termination
of CNR , and. hence the formation of DW , was established only in the present
analytical study and verified by experiments.

Table 8 sunmiarizes by whom and. when the boundary lines between domains
of different types of oblique shock-wave reflection were cal culated. For a
perfect monatomic gas the boundar~ line between RB and SW , CW or DMR was
calcula.ted by Law (1970) and all the other boundary lines for both perfect and
imperfect gases were calculated in the prese.nt study . In the ease of a diatoni c
gas , the perfect gas boun&ary lines BR/ SW , CW or DW . SW/CW and CMR1DW
were calculated b~r Neumann (1943) , Ba,zhenova. et a]. (1976) and. Ben-Dor (present) ,
respectively. (Note that since Neumann worked, in low Mach numbers , in his case
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the termination of ER was followed by an SW, however , his criterion of the
termination of RB is good also for higher values of Ma where BR is followed by
a CW or DMR.) AJJ the boundaries corresponding to an imperfect gas , i .e •,
BR/SW, CMR or DMR , SMR/CNR and CW/~~a were calculated in the present study .

8. DENS]~Y-FIEIJ) INVESTIGATION

The experimental facility and instrumentation discussed in ..~l~~pter ~were used to obtain interferograms of nonstationary oblique shock-wave reflec-
tions. Lines of constant densi ty (isopycnics) were obtained from them using
a method developed, by Whitten (Ref . 75) . A detailed. description of this very
precise data-evaluation technique is given in Refs . 71 and 75. Therefore , only
a bri ef descrip tion will be given for obtaining the isopycnics ( see Appendix E
for details) .

Very good. agreement with sophisticated numerical analyses were obtained
previously, using the identical equipment and evaluation techniques, in studies
such as ionizing shock-wave structure (Ref s. 68 and 69), flat-plate and sidewall
boundary layers (Ref s. 70 and 75) where boundary layer refraction errors are —

more significant than in the present study. Consequently, one can conclude
that the refraction errors from sidewall boundary layers had a neg1i~~.b1eeffect .

‘ The errors associated wi th the present experimental and evaluation
techniques are discussed in detail in Ref. 71. However, since the number of
fringes inside the shock-diffraction region was small , a more conservative
estimation was made of the absolute error in measuring fringe- shifts. The
error is taken as E(s) = 0.1 rather than the already conservative estimation
used by W~iitten and Ben-Dor (Ref . 71) , i . e . ,  0.05 . Consequently, the absolute
errors associated with the densities as measured from the interferograma are:

E(~tp) = 4.292 x l0~
6 
~~~ for argon (8.1)

E(~ p) 2.097 x 10 for nitrogen (8.2)

Since the values of the isopycriics were all normalized. wrt the flow density
ahead of the incident sho ck wave Po, the relative error i~~/p0 is used through-
out the present report .

During the last few years various Investigators (Ref s.  61, 63 and 614)
tried to develop computer codes for predicting the density field associated
with RB and. SW. No such data exist for CMR and DMR . A detailed comparison
between their numerically predicted density fields and the presen t results
is given in Ref . 73 and briefly .discussed in Section 8.2. The comparison
reveals that all numerical methods provide reasonable prediction of’ the wave
systems and their shock shapes for the cases that were ccax~ ared. However ,
they r1~edict rather poor values and locations of the more sensi tive indicators
of the flow isapycnics. Consequently the various codes (Ref s. 61, 63 and 61~)require a reassessment and perhaps a new approach In the light of the di sagree-
ment with the present detailed and very accurate interferometric data . Undoubtedly,
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numerical codes will evolve in the future that will reliably predict such
complex flow in imperfect gases . No doubt the present data will provi de a
solid base for future comparison .

8.1 Nitrogen

The seven shock wave diffraction domains corresponding to regions 1
to 7 of Fig. 39 are shown in the interferograms 63a to 63g, respectively. The
density distribution ( p/p0) in the flow fields , in terms of isopycnics (n)
associated with each diffraction process , are shown in Figs. 614a to 614g. The
density profiles along the wedge and the shock-tube wall appear in Figs. 65a
to 65g. In the following, a general description is given of each diffraction
as well as their similarities and differences.

Figures 63a , 63b , 63c and. 63f which correspond to flow deflections
through detached. shock waves ( regions 1, 2 , 13 and. 6 of’ Fig. 39) , shock wave
bifurcation and boundary layer roll-up are clearly seen . In order to have a
closer look at the shock wave bifurcation four experiments with Ms = 14.613 ,
24 .59, 14 .60 and 13.72 and 9-v, = 1400 were made. The process was recorded 26, 126,
226 and 326 ~tsec after the incident shock wave passed the centre of the test
section . The four corresponding interferograms are shown in Figs. 66a to 66d,
respectively. Figure 66a reveals, as expected, a DNR wi th a detached. bifurcated
shock wave. In Figs. 66b to 66d the incident shock wave is already outside of’
the field of view; however, the bifurcation process is seen to be growing with
time . Figures 66b and 66c , for example, show very clearly a bifurcated shock
and a slipstream, i.e., a three-shock confluence or a triple point. Note the
clear compression at the wedge corner and. expansion wave as the wedge becomes
flat giving rise to a corner-expansion flow . In Fig . 66d the reflected shock
wave R is seen reflecting from the upper wall of the shock tube.  Unfortunately,
the upper wall is not in the field. of view; however, it looks like the reflected
wave R reflected through a single-Mach reflection and that a Mach s tem joins it
to the upper wall.

It is worthwhile mentioning that White in his pioneering work (Ref.
17) was able to produce some very weak incident shock waves. He evaluated his
interferograms on shock-wave diffractions at very low M5. Figures 67a and 6Th
are reproductions of two of his original figures (Figs. 34 and 146 of Ref . 17) .
The initial conditions for these two pictures are M5 = 1.010, Ow = 5.7° (SW)
and, Ms = 1.018, Ow = 30 (RB), respectively. For these low values of M5 the
reflected shock w ave degenerates to a Mach wave and the flow turns over the
wedge subsonically. Note that for these two examples from White (Ref . 17) the
induced. flow Mach number M~ is 0.017 and. 0.029, respectively.

When the flow deflection over the corner is achieved through an
attached or detached. shock wave there is a sharp densi ty ju mp at ‘.- point
(Fig . 6~ ) .  In the case of an attached shock wave at the corner (Figs. 63c ,
63e and, 63g) the highest density along the wall is measured immediately
behind the attached shock wave, i.e., at the corner (point b, Figs. 65c , 65e
and 65g) while In the case of a detached shock wave (Figs . 63b , 63d , and 63g)
the highest density may or may not be (Figs . 65a and 65d) behind. this shock wave
or at the corner . It can occur near the slipsteadm (Fig . 65b) or near the
corner (Fig. 65d,) .

The exi stence of’ a cx ~ ressj on wave at the kink K of’ a CMR can be
clearly seen in Figs. 65d. and 64e where the isopycnics converge. The corre-
sponding compression strengths (density ratios) are approximately 6.880/6.24147
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and 8.778/8 .127 or 1.067 and 1.080, respectively. For the compressions of
1.067 and. 1.080 an increasingly clearer kink can be seen (Figs . 63d and 63e) .
The equivalent perfect shock wave Mach numbers that would give the seine
compressions are 1.0130 and. l .O~48 , respectively. The calculated flow Mach
numbers behind. the reflected. wave M2 in the vicinity of the triple point T
are 1.251 and 1.319, respectively. Once a DW is formed (i~ > 1) the iso-
pycriics do not converge any more (Figs . 614f and 614g) and the compression wave
is replaced. by a shock wave .

In the cases of SW (Figs. 6)4b and. 614c) the convergence of the
isopycnics corresponds to a weak expansion wave rather than a compression wave
( follow the isopycni c numbers) . The strengths of those expansion waves are:
3.7137/3.868 and 5.53/6 .11 or 0.969 and 0.905 , respectively. The case with an
attached. shock wave has the strongest expansion. This is also true for CW
(Figs. 624c and. 614e) . Figures 65a to 65g show that the density along the wedge
surface always increases as one moves from the Mach stem towards the point where
the slipstream disappears into the boundary layer . Consequently the flow behind
the Mach stem is being further compressed.

Although the density flow field associated with the various shock
wave diffractions differ greatly, nevertheless they do have some similarities.
For example, in the case of an attached. shock wave, Figs. 614c - SW and 64e - CMR ,
the isopycnics tend to run perpendicular to the reflected shock wave. In the case
of DW (Figs . 61tf and 624g) a “corridor T ’ is formed. for the second slipstream. L’i
Fig. 63g the second. slipstream is not visible, probably because the change in the
density is not sufficiently large to establish a noticeable fringe shift. However,
the “corridor ” is clearly seen in Fig . 61-#g and consequently a thin dashed. line
has been drawn in Fig . 65g to indicate the possible location of’ the second
slipstream.

The d.ensity at any point (x ,y) of Figs . 614a to 614g can be calculated
either by interpolating between or by extrapolating beyond the isopycnic in
the vicinity of that point. However , since the density difference between the
isopycnics is quite small, any region between them can be assumed. to have a
uniform average value . For a regi on where the density change was not suffi-
ciently large to plot isopycnics it can be assumed as uniform with the indicated
density number . For example , region n = 6 bounded. by R, B1 and. S in Fig. 614g
is assumed with p = 8

~87p~~ 
The relative error L~P/PO given in each figure

(Figs. 624a to 624g) was obtained. from Eq. 8.2 simply by dividing with the corre-
spond.ing value of p0. The error is fixed. for a particular experiment. It can
be as high as 37.6% for P0 5 torr (Fig. 613g) and as low as 5.2% for P0 37
torr (Fig . 613b). Note that the position of a point on any isopycnic was drawn
wi thin an accuracy of ± 1 nnn .

8.2 Comparison With Some Numerical Data and Discussions

The different compared. cases and. their initial conditions are shown
in Table 9. Although we have tried to perform our new experiments using exactly
the same initial conditions as those chosen by Schneyer and. Kutler and Shankar
for their numerical analyses , it was experimentally convenient to use nitrogen
at different initial pressures . However, owing to the fact that nitrogen and
oxygen can be treated as a perfect gas at a shock Mach number Ms = 2.00 , the
change in the initial pressure was not significant . Furthermore, since the
value of the flow isopycnics were normalized by the initial density ahead of’

‘0 
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the incident shock wave any correctly- computed and actual isopycnic shapes and
values must be the same. However, for strong shock waves real gas effects are
importan t and must be taken into accoun t , for RE at N5 = 14 .68 and P0 = 15.31
torr.

It can be seen from Table 9 that three differect ~a~es were comp ared.
Case 1 results in an RB with a weak incident shock wave (M s = 2.0) and it was
numerically solved by Schneyer and Kutler and Shankar . Case 2 is again an RB
but with a stronger incident shock wave (M~ = 24.71) and it was analyzed by
Kutler and Shankar . Case 3, an SW , was solved. by Schneyer using two di fferent
computer codes , the two-dimensional Eulerian code THOR , a revised version of
the I{~1P (Ref . 78) code, and the two-dimensional Lagrangian code CRA1~, based on
Wilkins ’ formulation (Ref. 79) . In Kutler and. Shankar the two—dimensional time-
dependent Euler equations were solved.. The hyperbolic partial-differential
equations were transformed to introduce self-similarity and the distance between
the corner and the incident shock wave was used for normalization . The self -
similar transformation reduces these equations from an unsteady to a quasi-
steady set of mixed elliptic-hyperbolic ec~uations. Then the equations were
made totally hyperbolic by reintroducing a time-like term. The final set of
equations were written in a “strong conservation law form ” and solved using
MacCormack ’ s (Ref . 80) second-order finite-difference algorithm.

Cc~~ ari son With Case I

The shape of the isopycnics obtained numerically by Schneyer , Kutler
and Shankar and. in the present experiment s are shown in Figs. 68a, 68b and 68c,
respectively. The contour number and the corresponding density ratio are tabu-
lated in Figs . 68a and. 68c. Unfortunately we were unable to obtain the contour
numbers from Kutler and Shankar (Ref . 63) for Fig . 68b . It is worth noting that
the measured density ratios iimi~ diately behind the incident and reflected shock
waves always agree well with theory . it can be seen i~~ediately that the actual
shapes of the isopycnics obtained experimentally appear similar to those pre-
dicted. by Kutler and Shankar . However , the results from Schneye r do not
represent the physical flow. One could discard the isopycnics shown by Schneyer
using the following argument. Schneyer ’s isopycnics (ever~ if their lines weretaken to represent the shock as a result of artificial viscosity smearing)
have the same value over the entire length of the reflected shock R. This means
that the density j ump across R is con.~tant everywhere. However, since the angle
of incidence between the flow entering R (in a frame of reference attached to
the reflection poiDt P) decreases as R ~~ves away f r o m  P, the strength of R
should. increase to maintain a constant density ju mp . Thi s contradicts both
theory and experiment where the shock-wave strength along R decreases as the
distance from the reflection point increases, as shown in Fig. 68c. Conse-
quently, the density ratios in the vicinity of ~ in Fig . 68a are iuucn larger
compared with the actual result (Fig . 68c). However, just the range of’ density
given by Schneyer (Fig . 68a) approximates t~ae measured range (Fig . 68c) . Un-
fortunately only a qualitative comparison can be made with the results of Kutler
and Shankar since their values corresponding to the various isopycnics were not
given on the figures in Rr~f. 63, and were unavailable from private communications.

A c~~~ arlson between the actual shock-wave configuration and the shapes
predicted. by Schneyer and Kutler and Shankar is shown in Fig . 68d . Since
several isopycnics of Schneyer represent shock waves as a result of artificial
viscosity, the two extreme contour s were reproduced in Fig. 68th The distance
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between the incident shock wave and the corner is normalized f or all shapes.
It can be clearly seen from Fig . 68d that the predicted. shapes do not d i f fer
too much from the actual shock-wave configuration . It is worth men ti oning
that Kutler and Shankar predict their numerically-obtained configuration to
be slightly larger than the actual one. However, their explanation that this
is due to viscous or real-gas effects is reasonable for the latter. It can
be shown analytically that vibrational excitation will reduce the angle
between the reflected shock wave and. the wedge and hence will result in a
smaller configuration . The angle between B and the wedge surface at the
reflection point is 16.324 0 for a perfect gas and i6.o24 when real-gas effects
are considered. Note that although Schneyer and Kutler and Shankar used two
different computational methods which disagree in the prediction of the entire
density field., they nevertheless agree in the shock shapes and systems . One
can only conclud.e that the isopycnics are much more sensitive indicators of
the accuracy of the physical flow modelled by a specific numerical technique.

Comparison of Case 2

The general shapes of the isopycnics predicted by Kutler and Shankar
(Fig. 69a) do not agree with the actual ones (Fig. 624a). Their predicted shapes
for this case of RB are almost the same as those di scussed previously (Fig . 68b )
while our results are very different (Fig . 68c) . The disagreement between the
actual and nur~ rical isopycnics may arise from the fact that Kutler and Shankar
assume a perfect gas . However , for Ms = 14.71, P0 = 15 torr, T0 = 298 K , real-
gas effects cannot be neglected as the vibrational contribution is significant
( e .g . ,  pojp0 = 124.53 for a perfect gas and 17 .75 for an imperfect gas) . Although
this will change the absolute numerical values of the isapycnics it might also
affect their shapes.

Although Kutler and Shankar did not report the values of’ the various
isopycnics on their reproduced Fig. 69a, we deduced repr€.sentative values from
their density distribution along the wall shown in Fig . 69b . The range of their
densities is lower than the present owing to their assumption of’ a perfect gas.
Note that the strength of the reflected. shock wave B decreases from the reflec-
tion point to the shock-tube wall in agreement with exoeriment (Fig. 61#a) . The
numerically calculated density distribution along the wall surface predicted
by Kutler and Shankar as well as the measured values close to the wall above
the thin boundary layer axe shown in Figs. 69b and. 65a, respectively. The fact
that the actual density values are higher than those ~redicted by Kutler and
Shankar again arises from their perfect-gas assumption. For their case of
N5 = 24.71 the perfect-gas value p2/po = 124.53, while for the present case the
measured value of’ Pa/po = 16.77, and. it lies between the perfect and imperfect
equilibrium values of 124.148 and 17.65 , respectively .

The vortica]. singularity predicted by Kutler and Shankar (v, Fig. 69a)
or point d. (Fig . 69b) cannot be seen in the interferogram. Therefore the curve
from b to f (Fig . 65a) , unlike the curve in Fig . 69b , has no discontinuity.
If one existed. it w~~.ld be smeared out by the boundary layer. Both cw~vesconsist of’ a sharp density jump P20 (f - f) at the reflection point followed
by a uniform-density region (whick~ is longer in Fig. 69b) terminated by anexpansion . At the detached. shock-wave position b another sharp rise takes
place (the rise is greater in Fig . 69b) . The fringe pattern due to the
shock-boundary-layer interaction at the corner was too complex to analyse .
Therefore the density ratio was extrapolated to the location of the detached
shock wave near the corner .
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The actual shock wave configuration and the one predicted by Kutler
and Shankar are shown in Fig . 69c. This figure agrees with their statement
that “the experimental shock location would fall inside the numerical solution” .
As mentioned earlier , the reason for thi s lies in real-gas effects rather than
viscous effects suggested. by Kutler and. Shankar . The angle between the reflected
shock wave B and the wedge surface for a perfect gas is i~4.8o and. 12. 145° fox
a real gas. Consequently the actual shape is smaller than the one obtained
from a perfect-gas model.

Comparison With Case 3

The shapes of the isopycnics obtained numerically by Schneyer (Ref.
61) using the Lagrangian and. Eulerian computer codes as well as those d tained
experimentally are shown in Figs . 7Oa , 7Ob and 70c , respectively . It is evident
that the Lagrangian and. Eulerian results differ quite consid.erably f rom each
other and, from the actual isopycnics. The numerical configurations suffer from
the same artificially viscous spreading of the incident and reflected shock
waves. The isopycnics maintaining the same values along B imply a physically
unrealistic reflected. shock w ave of increasing strength as it moves away from
the triple point T. Spurious isopycnics (n = 24 and. 5, Fig . 7Oa) appear from
the Lagrangian code in the middle of the reflected wave R.  There are no
density contours generated in the important region between the Mach stem M and
the slipstream S. The Eu.lerian contours fail to predict the existence of a
slipstream altogether (Fig . 70b). Il’ a line is drawn at the estimated location
of the slipstream, it intersects the isopycnics implying that the densities on
both sides of the slipstream are equal in violation of the physical condition
that the slipstream divides two thermodynamic regions of’ different densities ,
even if not large . Schneyer (Ref . 61) attributes the appearance of the spuri ous
expansion and. shock waves in the middle ofR in the Lagrangia.n results to an
inexact choice of the initial velocity profile . He explains the disappearance
of the slipstream (in the Eulerian result) as being “washed. out” by the “effective
{artificial ] viscosity” .

The actual shape of the isopycnics (Fig . 70c) show very clearly that
the densities on both sides of the slipstream are different. The densities
behind the reflected shock wave are higher than those behind the Mach stem ,
as expected from gasdynami c sondierations. The approximate density ratio across
the slipstream is 1.12 (3.67/3.27 near the triple point) shows that it is indeed
a weak discontinuity. The analytical density ratio across the slipstream in
the vicinity of the triple point is 1.10 . A qualitative comparison be tween
the shapes of the actual isopycnics and those of’ Schneyer indeed show poor
agreement . However , as in the previous case only the range of density values
approximate those obtained experimentally.

A comparison between the normalized predicted shock shapes and the
actual wave configuration is shown in Fig . 70d.. The Lagrangian wave system is
somewhat larger than the Euleriaxi. The actual shock wave system lies close to
or inside the Eulerian shape boundaries. The slipstream predicted by the
Lagrangian code agrees reasonably well with experiment . It is worth repeating
that also in thi s case the Lagrangian and Eulerian codes predict the actual
wave system quite well . However , the isopycnic fields and the varying strength
of the reflected w~~ e are poorly represented..

It can be suiim~ari zed that the present experiments show that all
numerical methods provide reasonable predictions of the wave systems and. their
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shapes for the two analysed. cases of’ RB and S!vlR . No numerical data exist for
the cases of CNR and. DNR . The numerical codes predict rather poor values arid.
locations for the more sen~Ltive indicators of’ the flow properties, namely the
isopycnics. Of the various numerical analyses produced. so far, the one of
Kutler and Shankar (Ref . 63) and Shankar, Kutler and Anderson (Ref. 624) are
superior . Even their codes require a reassessment and perhaps a new approach
in the light of the disagreement with the detailed and very accurate interfer-
cszietric data presented here.

Undoubtedly, numerical codes will evolve in the future that will
reliably predict not only RB and. SNR but also CM~ and DN1~ in real gases. The
present interferometric data of all these cases should provide a solid base
for compari son . In the meantime , those laboratories that have shock tubes
equipped. with interferometers will benefi t from experiments in nonstationary
flows in order to check their numerical analyses.

9. CONCLUSIONS

The criteria for the formation and termination of RB, SNR , CMR and
DNR , their domains and. transition boundaries in both nitrogen and argon , in
the (Ms , e~)-p1ane for nonstationary flows and in the (N0, ~~~-plane forsteady flows have been established analytically and. verified experimentally .

The equations of motion for RB and SI~ in a perfect and an imperfect
gas (nitrogen in dissociation equilibrium and argon in ionization equilibrium)
have been solved , and the signifi cance of real-gas effects on shifting the
boundary lines between the domains of different reflections was shown for the
first time.

Analytical methods for predicting the values of x and x ’ were
d.evel9>ed , and consequently the reflection process was transformed. from the
(Me, ~~ -plane to the more physical (M5, e~) -plane . The reflection phenomenon
in the (I4~ , 8w) plane was then superimposed with the flow deflection process
in the (N5 , e~ ) -piane to yield the overall shock-wave-diffraction phenomenon.
It is shown that the range 1 < M ~ < 10 seven different types of diffraction are
possible in nitrogen and. six in argon depending on the incident shock wave
Mach nuxxber Ms, the wedge angle ew, and the initial pressure P0 and tempera-.
ture T0. The present analyses were all substantiated by over 120 interfer-
ometric experiments conducted in the UTIAJS 10 cm x 18 cm Hypervelocity Shock
Tube , as well as many other data in nitrogen , oxygen and air for a diatonic
gas and. argon and helium for a monatomic gas obtained from other sources. This
has brought new order and understanding of the various results from different
researchers.

One significant problem remains , namely a more accurate analytical
method for calculating the triple-point trajectory angle x than the one
developed. earlier by Law and Glass (Ref . 6i) using a graphical technique and
presently by using a more accurate analytical method .

The density fields of the different diffraction processes have been
deduced. from the corresponding interferograms , and compared with available
numerical predictions .
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The very comprehensive isopycni c data are the first since the early
pioneering work of White (Ref s. 17 and 18) who first noticed the four types of
reflection . The results provi de an important base for testing available and
future cc*xxputationaJ. codes describing such ccmplex flows . Although the
numerical methods can satisfactorily predict the gross features of tne wave
system and. shock shapes for regular and single-Mach reflecti on s, they are as
yet unsatisfactory for predicting the isopycnics of the flow (Ref . 73) .
computational data presently exist for complex and double-Mach reflections.
Undoubtedly, such codes will evolve in the rear future .
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Table 1

Diffraction Regions in Nitrogen

(Fig. 39)

Shock Diffraction
Region No.

Shock Flow
Reflection Deflection

1 HR Detached

2 SNR Detached

3 SMR Attached

14 CNR Detached

5 CNR Attached

6 DMR Detached

7 DMR Attached

Table 2

Diffraction Regi ons in Argon

(Fig . 140)

Shock Diffraction
Region No.

Shock Flow
Reflection Deflection

1 RR Detached

2 SW Detached

3 SW Attached.

14 CNR Detached

5 CNR Attached

6 DMR Detached

.- . -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~



Table 3

Initial Conditions for Obtaining

Various Shock Wave Mach Numbers - Nitrogen

M
5 

P~~ Driving Gas

2.0 110 CO2

3.7 220 He

14.8 690 He

6.2 800 He

7.0 1550 H2

7.8 3320 H2

Table 14

Initial Conditions for Obtaining

Various Shock Wave Mach Numbers - Argon

Driving Gas

2.0 60 CO2

3.0 70 He

14. 14 350 He

5.2 800 He

6.i 520 H2
6.9 1000 H2

7.9 1900 H2

I .. 

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



rr 
~~~~~~~~~~~~~~~~~~ 

- -

~~ 

- _ -
—

~

--.

~~ 

-_——-

~~

-- - - 
_

Table 5

Initial Conditions for the Experiments in Nitrogen

M~ P
~ 

T~ j ~ 
Ref’lec-

2 1.95 52 .50 297.2 26.0 SW 70
2 1.89 53.50 297.3 26.5 SW 71
2 1.85 52.50 297.14 26.5 SW 72
2 3.814 15 .19 297.14 23.5 SW 73
2 14.15 15.17 297.3 23.0 SW 74

5 3. 75 15.25 295.9 20.5 SW 37
5 14.71 15 .81 295.2 20.0 SW 31
5 5.85 15.18 297.0 19.5 SW 33
5 6.oi 15.19 295.8 18.5 SW 34
5 6.86 10.00 295.6 18.0 SW 35
5 7.51 5.17 296.0 17.5 SW 36

10 2.01 50.00 295.8 19.0 SW 39
10 2.37 35 .414 297.7 18.5 SW 88
10 2.61 37.00 297.8 18.0 SW 90
10 2.82 30 .314 297.6 18.0 SW 89
10 3.62 15 .23 295.14 i6.~ SW 140
10 14.59 15.16 298.5 16.2 SW 5
10 l4.72 15.00 295.0 i6.o SW 43.
10 5.92 15.27 295.0 15.5 SW 42
10 6.79 10.21 295.2 15.0 SW 43
10 7.58 5.13 2914.8 14.5 SW 44

20 1.93 51.00 297.2 12.5 SW 50
20 3.74 15.31 297.14 12.0 CW 49
20 4.8i 15.29 296.6 11.5 15.5 CNR 48
20 6.27 15.33 296.0 11.2 i4.~ ow 47
20 6.87 10.12 295.8 11.0 14.0 CW 46
20 7.71 5.06 296.0 10.0 11.5 CW 45

26.56 2.01 50 .00 296.6 9.2 SW 26
26.56 8.06 5.10 298.2 9.0 9.9 DMR 102

30 1.97 51.00 297.4 8.5 SW 51
30 3.68 15.27 297.3 8.o 10.0 CNR 52
30 4.68 15.28 297.4 7.8 9.5 DMR 53
30 5.93 15.22 297.4 7.7 10.0 DMR 54
30 6.96 10.11 297.4 7.6 9.8 D1~IR 55
30 7.97 4.99 297.4 7.14 9.0 DW

Continued.  



Table 5 - Continued

Initial Conditions for the Experiments in Nitrogen

— 

N T0 
, Reflec-

40 2.02 50.00 297.3 4 .o CNR 63
3.69 15.34 297 .14 14.8 7.0 DNR 62

40 4.59 15.614 298.2 DW 9
40 4.60 15.15 298.4 DMR 10
140 4.614 15.29 297.2 5.0 6.2 DMR 6
40 4.72 15.31 296 .14 DMR 7
40 4.75 15.30 297.4 5.2 6.2 DW 61
40 14.98 5.13 296.9 5.2 6.8 DMR 5
40 6.17 15 .314 297.14 14.2 6.0 DMR 60
4o 6.97 10.28 297.3 3.8 5.5 DW 59
4o 7.78 5.00 297.3 3.5 14. 0 DMR 57
40 7.95 5.01 298.5 3.8 14.o DW 58

50 2.07 50.00 299.6 HR 127
50 3.69 15.27 298.9 HR 126
50 4.78 15 .214 298.14 RH 125
50 6.22 15.29 299.6 BR 124
50 7.29 10.22 299.1 HR 123

60 1.96 65.00 299.0 BR 130
60 2.03 59.00 299.2 RH 128
6o 3.84 17.18 299.0 BR 129
6o 4.68 15 .31 298.1 BR 18
60 4.76 15.26 298.4 HR 131

63.43 2.01 50.00 296.8 HR 25

-

~
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Table 6

Initial Conditions for the Experiments in Argon

Ref lee-p T0 X X tion Exp

2 2.03 50.00 297 .14 28.5 SW 84
2 3.02 20.29 297.8 28.0 SW 83
2 4.39 15 .00 297.14 27.5 SW 75
2 5.19 15.30 297.2 27.0 SW 78
2 5 .33 5.04 297.3 76
2 5.42 5.08 297.3 77
2 6.13 15.33 296.0 SW 80
2 6 .47 15.32 295.4 26.0 SW 81• 2 7.77 9.80 297.6 25.0 SW 82

10 2.01 50.00 298.6 21.0 SW 85
10 2.96 20.28 299.0 20.0 SW 86
10 14.39 15.32 297.0 19.5 SW 87
10 5.22 15.22 298.4 19.2 SW 91
10 6.06 15.214 299.0 18.5 SW 92
10 6. 147 15.27 299.0 18.5 SW 93
10 7.88 9.96 298.6 17.5 SW 94
20 2.00 50.00 298.14 15.0 SW 101
20 2.82 20.32 299 .0 i~4 .5 SW 100
20 14.140 15.26 299.0 114. 0 (~4P~ 99
20 5.20 15 .22 299.0 i14 .O 17.0 CMR 98
20 6.04 15.27 297.2 13.7 17.5 CW 97
20 6.814 15.22 298.4 i14.o 18.0 CW 96
20 7.76 9.824 299.0 14.0 17.5 CIvIR 95
30 2.03 50.00 299.6 9.5 - SW 103
30 2.89 20.214 299.2 9.5 12.0 OW io14
30 4.51 15.25 299.0 10.0 13.0 OW 105
30 5.29 15 .21 299.4 10.0 12.5 ow 106
30 6.36 15.27 299.14 10.2 13.0 OW 107
30 6 .96 15.00 295.4 10.0 13.0 OW 109
30 8.01 9.80 299.5 10.0 13.0 CW 108

40 2.05 50.00 297.8 6.0 11.0 C}4R 116
140 3.11 20.34 299.8 5.5 10.0 OW 115
40 4.44 15 .00 299.1 5.5 10.0 DNR ii4
40 5.28 15.29 297.9 5.5 10.0 DMR 113
40 6.12 15.32 297.6 5.7 10.0 DNR 112
40 6.81 15.23 298.8 5.7 9.5 DMR 111
140 7.53 9.87 297.0 5.5 9.5 DMR 110

50 2.04 50.00 298.2 1.0 OW 117
50 2.96 20.50 298 .14 1.5 4.o D14R 118
50 4.40 15.30 299.2 2.0 4.0 DMR 119
50 5.27 15.32 298.2 1.5 24.0 DNR 3.20

50 6.27 15.34 299 .14 i.4 4.0 DNR 121
50 7.03 15.29 299.14 1.3 3.5 DMR 122

Continued 
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Table 6 - Continued

Initial Conditions for the Experiments in Argon

N
5 

P0 T0 ~~~
‘ 

Ref].ec- Exp.

60 2.03 50.00 301.0 RH 132

6o 2.03 50.00 299.2 ER 1314
60 3.03 20.00 299.5 RH 133

6o 4.50 16.16 299.8 HR 135
60 5.214 15.30 299.2 ER 136
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Table 7

Discovery of Four Types of’ Oblique-Shock-Wave Reflections

Suggestion of Criterion for

Discovered by Formation Termination

*
Mach Neumann Hornung et al

BR Ref . 1 Ref. 2 Ref. 65
1878 1924 3 1976

*

Mach Hornung ct al White
SW Ref. 1 Ref. 65 Ref. 17

1878 1976 1951

**
Smi th White Ben-Dor

0MB Ref . 6 Ref . 17 Present
1945 1951 1978

** White Ben-Dor
DW Ref . 17 Present

1951 1978

* The termination criterion of RB and formation cri terion of SW for non-
stationary flows were established by Neumann ( 19243) and for steady flows
by Henderson and Lozzi ( 1975). However , Hornung and K.ychakoff established
a more general criterion which holds for both steady and nonstationary flowe

~
-
~

- Recall that 0MB and DW do not exist in steady flows.

~~~~~~~~ For the time being DW may not terminate. However , it is possible that for
very high values of N8, the flow Mach nuther in state ( 5) ,  see Fig . 19,
will become so high that a shock wave will be needed to prevent it from
colliding with the wall . Under these circumstances DNR will terminate ,
and a triple-Mach reflection (TW) might be formed .
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~

-

~

— —  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~-_ - -  -~~—_~~~~~~~~~~~ — —-— - _ -  —-~~~—~~~~ -- - - - • - • - - _ - 

-

~~~~



—~~~---——-- — —- - -• 
• • • •

Table 8

Discovery of Analytical Boundaries

for Four Types of Oblique-Shock-Wave Reflection

Calculation of Boundary Lines Between Reflection Domains

Monatomic Gas Diatomic Gas

Perfect Iu~ erfect Perfect Imperfect

*/ SW Law Ben-Dor Neumann Ben-Dor
R R J  0MB Ref . 48 Present Ref . 2 Present

I DMR 1970 1978 19243 1978

Ben-Dor Ben-Dor Ben-Dor Ben-Dor
DNR/CW Present Present Present Present

1978 1978 1978 1978

Ben-Dor Ben-Dor Bazhenova et al Ben-Dor
OW/SW Present Present Ref . 55 Presen t

1978 1978 1976 1978

* Recall that the termination of BR can result in either an SW , 0MB or
D}4R depending on the value of N6 (see Figs. 39 and 140 for details). 
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Table 9
The Compared Reflection Cases and Their Initial Condi tions

mperfect Perfect GasGas

Ini tial* Present -__
.~chneyer Kutler

Type Case Conditions Experiment Eulerian [La€ran~ian & Shankar

Gas N2 ri.’40

63.43 63.43 63.41

M 2.01 2.00 2.00
1

P0 (torr) 50.00 760 760

T0 (K) 298.6

p0(g/ cm3) 7.57xlO’
~
5 10~~ 10~~

Gas N2

60 .00 60

M 14.68 24.71
2

P0 ( torr) 15.31 15

T0 (K) 298.1 298.6

p0(g/cm3) 2.31x].0 5 2.50xl0 5

Gas N2 7 i.4o

26.56 26.56 26.56

M 2.01 2.00 2.00
3 5

p
0 (torr) 50.00

T0 (K) 296.6

p0(g/~~1
3) 7.57x10 5 l0~~ io~~

cc 
_ _ _ _  _ _ _  _ _  _ _  _ _ _ _

* Initial conditions are for the quiescent gas ahead of the incident shock wave.
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600

RR

~ CMR \

SMF?

200
3 5 7 9

Incident Shock Wave Mach Number - M~
FIG. 3. DOMA I NS AND BOUNDAR I ES OF SHOCK WAVE RE FLECT ION IN (N , e ) -p 1~~IE(ENLARGE REPRODUCTI ON OF FIG. 5 , REF. 62). SOLID LIN~S ~ARE ANALYT ICA L , DASHED LINES ARE EXPERIMENTAL .
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(b )

PIG . 4. EXPLANATO RY DIAGRAM OF THE REASONS FOR NONSTATIONARY SHOCK-
WAVE REFLECTION.

(a) Nonstationary flow with M
1 > 1 w.r . t.  point P .

(b) Nonstationary flow with M
1 

c 1 w.r.t. point p.
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a) R is Straight 0 tO 20
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6-Iv’s
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_ _  
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R12

~~~

0 to 2ob) R is Curve d

FIG. 9. REGULAR REFLECTION PROCESS AT POINT P, NITROGE N , P
0 

= 15 TORR ,T
0 

= 298.6 K , M0 = 2.00.
(a) 0 = 49.59°, M = 1.30
(b) e~ = 47.46°, N: = 1.35
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(0) ~~~~~ (I)

f / / f ,

F I G .  12. SCHEMATIC DIAGRAJI OF A SINGLE -MACH REFLECT I~~ (SMR).

~~P/Po
8

6 
(2) (3)

R

p1 —--F- -- (I)

~~~~~ 1

(0)9?9., I °lpr
0 10 20 30

FIG . 13. SMR IN THE (p , e)-pLANE , NITRO GEN . P 0 • iS TORR. • 300 K ,
N5 • 1.59 ,0 , . 46.27 . N0 • 2.30.
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F I G .  17. SCHEMATIC DIA(;RAI.1 OF A COMPLEX-MA CH REFLECT ION (04R) .

(4 ), (~ 5) R wrt K
p Rwrt T

_
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F I G .  18. CMR IN THE (P~ e)- PL AN E .
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